Skip to content

Commit e394f37

Browse files
authored
Rename package to Associations.jl (#377)
* package rename * fix docs build
1 parent 2face07 commit e394f37

File tree

77 files changed

+263
-264
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

77 files changed

+263
-264
lines changed

LICENSE.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
The CausalityTools.jl package is licensed under the MIT "Expat" License:
1+
The Associations.jl package (previously called CausalityTools.jl) is licensed under the MIT "Expat" License:
22

33
> Copyright (c) 2018: Kristian Agasøster Haaga.
44
>

Project.toml

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
1-
name = "CausalityTools"
2-
uuid = "5520caf5-2dd7-5c5d-bfcb-a00e56ac49f7"
1+
name = "Associations"
2+
uuid = "614afb3a-e278-4863-8805-9959372b9ec2"
33
authors = ["Kristian Agasøster Haaga <[email protected]>", "Tor Einar Møller <[email protected]>", "George Datseris <[email protected]>"]
4-
repo = "https://github.com/kahaaga/CausalityTools.jl.git"
5-
version = "3.0.0"
4+
repo = "https://github.com/kahaaga/Associations.jl.git"
5+
version = "4.0.0"
66

77
[deps]
88
Accessors = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697"

README.md

Lines changed: 10 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,15 @@
1-
# CausalityTools
1+
# Associations
22

3-
[![CI](https://github.com/juliadynamics/CausalityTools.jl/workflows/CI/badge.svg)](https://github.com/JuliaDynamics/CausalityTools.jl/actions)
4-
[![](https://img.shields.io/badge/docs-latest_tagged-blue.svg)](https://juliadynamics.github.io/CausalityTools.jl/stable/)
5-
[![](https://img.shields.io/badge/docs-dev_(master)-blue.svg)](https://juliadynamics.github.io/CausalityTools.jl/dev/)
6-
[![codecov](https://codecov.io/gh/JuliaDynamics/CausalityTools.jl/branch/master/graph/badge.svg?token=0b71n6x6AP)](https://codecov.io/gh/JuliaDynamics/CausalityTools.jl)
3+
[![CI](https://github.com/juliadynamics/Associations.jl/workflows/CI/badge.svg)](https://github.com/JuliaDynamics/Associations.jl/actions)
4+
[![](https://img.shields.io/badge/docs-latest_tagged-blue.svg)](https://juliadynamics.github.io/Associations.jl/stable/)
5+
[![](https://img.shields.io/badge/docs-dev_(master)-blue.svg)](https://juliadynamics.github.io/Associations.jl/dev/)
6+
[![codecov](https://codecov.io/gh/JuliaDynamics/Associations.jl/branch/master/graph/badge.svg?token=0b71n6x6AP)](https://codecov.io/gh/JuliaDynamics/Associations.jl)
77
[![DOI](https://zenodo.org/badge/135443027.svg)](https://zenodo.org/badge/latestdoi/135443027)
88

9-
CausalityTools.jl is a package for quantifying associations, independence testing and causal inference.
9+
Associations.jl is a package for quantifying associations, independence testing and causal inference.
1010

1111
All further information is provided in the
12-
[documentation](https://juliadynamics.github.io/CausalityTools.jl/dev), which you can either
12+
[documentation](https://juliadynamics.github.io/Associations.jl/dev), which you can either
1313
find online or build locally by running the `docs/make.jl` file.
1414

1515
## Key features
@@ -31,4 +31,6 @@ we also offer
3131

3232
## Installation
3333

34-
To install the package, run `import Pkg; Pkg.add("CausalityTools")`.
34+
To install the package, run `import Pkg; Pkg.add("Associations")`.
35+
36+
*Previously, this package was called CausalityTools.jl*.

docs/Project.toml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,5 @@
11
[deps]
22
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
3-
CausalityTools = "5520caf5-2dd7-5c5d-bfcb-a00e56ac49f7"
43
ComplexityMeasures = "ab4b797d-85ee-42ba-b621-05d793b346a2"
54
DelayEmbeddings = "5732040d-69e3-5649-938a-b6b4f237613f"
65
Distances = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"

docs/make.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -6,12 +6,12 @@ using DocumenterInterLinks
66
import Downloads
77

88
# Packages used in the doc build.
9-
using CausalityTools
9+
using Associations
1010
using ComplexityMeasures
1111
using StateSpaceSets
1212

1313
pages = [
14-
"CausalityTools.jl" => "index.md",
14+
"Associations.jl" => "index.md",
1515
"Core API reference" => [
1616
"Association measures" => "associations.md",
1717
"Independence" => "independence.md",
@@ -43,7 +43,7 @@ bibliography = CitationBibliography(
4343
style=:authoryear
4444
)
4545

46-
build_docs_with_style(pages, CausalityTools, ComplexityMeasures, StateSpaceSets;
46+
build_docs_with_style(pages, Associations, ComplexityMeasures, StateSpaceSets;
4747
expandfirst = ["index.md"],
4848
bib = bibliography,
4949
pages = pages,

docs/src/api/counts_and_probabilities_api.md

Lines changed: 12 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,21 @@
11

2+
```@meta
3+
CollapsedDocStrings = true
4+
```
5+
26
# [Multivariate counts and probabilities API](@id counts_and_probabilities_api)
37

4-
For counting and probabilities, CausalityTools.jl extends the single-variable machinery
8+
For counting and probabilities, Associations.jl extends the single-variable machinery
59
in ComplexityMeasures.jl to multiple variables.
610

711
```@docs
8-
CausalityTools.Counts
9-
CausalityTools.counts(::OutcomeSpace)
12+
Associations.Counts
13+
Associations.counts(::OutcomeSpace)
1014
```
1115

1216
```@docs
13-
CausalityTools.Probabilities
14-
CausalityTools.probabilities(::OutcomeSpace)
17+
Associations.Probabilities
18+
Associations.probabilities(::OutcomeSpace)
1519
```
1620

1721
The utility function [`marginal`](@ref) is also useful.
@@ -26,7 +30,7 @@ Estimating multivariate counts (contingency matrices) and PMFs is simple. If the
2630
we can use [`UniqueElements`](@ref) to simply count the number of occurrences.
2731

2832
```@example counts_probs_tutorial
29-
using CausalityTools
33+
using Associations
3034
n = 50 # the number of samples must be the same for each input variable
3135
x = rand(["dog", "cat", "snake"], n)
3236
y = rand(1:4, n)
@@ -46,7 +50,7 @@ For numerical data, we can estimate both counts and probabilities using [`Codify
4650
with any count-based [`OutcomeSpace`](@ref).
4751

4852
```@example counts_probs_tutorial
49-
using CausalityTools
53+
using Associations
5054
x, y = rand(100), rand(100)
5155
discretization = CodifyVariables(BubbleSortSwaps(m = 4))
5256
probabilities(discretization, x, y)
@@ -55,7 +59,7 @@ probabilities(discretization, x, y)
5559
For more fine-grained control, we can use [`CodifyPoints`](@ref) with one or several [`Encoding`](@ref)s.
5660

5761
```@example counts_probs_tutorial
58-
using CausalityTools
62+
using Associations
5963
x, y = StateSpaceSet(rand(1000, 2)), StateSpaceSet(rand(1000, 3))
6064
6165
# min/max of the `rand` call is 0 and 1

docs/src/api/cross_map_api.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ Let's reproduce figure 3A too, focusing only on [`ConvergentCrossMapping`](@ref)
4040
For this example, they use a bidirectional system with asymmetrical coupling strength.
4141

4242
```@example MAIN_CCM
43-
using CausalityTools
43+
using Associations
4444
using Statistics
4545
using LabelledArrays
4646
using StaticArrays
@@ -201,7 +201,7 @@ slightly different embedding.
201201

202202

203203
```@example MAIN_CCM
204-
using CausalityTools
204+
using Associations
205205
using Statistics
206206
using LabelledArrays
207207
using StaticArrays
@@ -267,7 +267,7 @@ variables ``X`` and ``Y``, where ``X`` drives ``Y``.
267267
After we have computed the PAI in both directions, we define a measure of directionality as the difference between PAI in the ``X \to Y`` direction and in the ``Y \to X`` direction, so that if ``X`` drives ``Y``, then ``\Delta < 0``.
268268

269269
```@example MAIN_CCM
270-
using CausalityTools
270+
using Associations
271271
using LabelledArrays
272272
using StaticArrays
273273
using DynamicalSystemsBase

docs/src/api/discretization_counts_probs_api.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ When discretizing, what happens is that we "encode" input data into an intermedi
1212
- Once a dataset has been encoded into integers, we can estimate [`Counts`](@ref) or [`Probabilities`](@ref) ([tutorial](@ref tutorial_probabilities)).
1313
- Once probabilities have been estimated, one can use these to estimate [`MultivariateInformationMeasure`](@ref) ([tutorial](@ref tutorial_infomeasures)).
1414

15-
The following functions and types are used by CausalityTools.jl to perform discretization of input data.
15+
The following functions and types are used by Associations.jl to perform discretization of input data.
1616

1717
```@docs
1818
Discretization
@@ -21,7 +21,7 @@ CodifyPoints
2121
codify
2222
```
2323

24-
In summary, the two main ways of discretizing data in CausalityTools are as follows.
24+
In summary, the two main ways of discretizing data in Associations are as follows.
2525

2626
- The [`CodifyPoints`](@ref) discretization scheme encodes input data on a point-by-point
2727
basis by applying some [`Encoding`](@ref) to each point.
@@ -66,7 +66,7 @@ We'll here use the [`OrdinalPatternEncoding`](@ref) with differing parameter `m`
6666
multiple [`StateSpaceSet`](@ref) of differing dimensions.
6767

6868
```@example example_encode_points
69-
using CausalityTools
69+
using Associations
7070
using StateSpaceSets
7171
using Random; rng = Xoshiro(1234)
7272
@@ -128,7 +128,7 @@ Some [`OutcomeSpace`](@ref)s dictate a sliding window which has the width of one
128128
when used with [`CodifyVariables`](@ref). [`ValueBinning`](@ref) is such an outcome space.
129129

130130
```@example example_encode_vars
131-
using CausalityTools
131+
using Associations
132132
using Random; rng = Xoshiro(1234)
133133
134134
x = rand(rng, 100)
@@ -150,7 +150,7 @@ end of each input variable are lost. For example, with [`OrdinalPatterns`](@ref)
150150
of encoded points decrease with the embedding parameter `m`.
151151

152152
```@example example_encode_vars
153-
using CausalityTools
153+
using Associations
154154
using Random; rng = Xoshiro(1234)
155155
156156
x = rand(rng, 100)
@@ -163,7 +163,7 @@ the same outcome space, as long as the operation will result in the *same* numbe
163163
data points for each column.
164164

165165
```@example example_encode_vars
166-
using CausalityTools
166+
using Associations
167167
using Random; rng = Xoshiro(1234)
168168
169169
x = rand(rng, 100)

docs/src/api/information_multivariate_api.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ Amplitude
6060
## [A small tutorial](@id tutorial_infomeasures)
6161

6262

63-
CausalityTools.jl extends the single-variate information API in
63+
Associations.jl extends the single-variate information API in
6464
[ComplexityMeasures.jl](https://github.com/JuliaDynamics/ComplexityMeasures.jl)
6565
to information measures of multiple variables.
6666

@@ -115,7 +115,7 @@ expressed as a function of a joint pmf, we can use the [`JointProbabilities`](@r
115115
estimator.
116116

117117
```@example INFO_TUTORIAL
118-
using CausalityTools
118+
using Associations
119119
using Random; rng = MersenneTwister(1234)
120120
x, y = rand(rng, 1000), rand(rng, 1000)
121121
@@ -143,7 +143,7 @@ they are functions of a joint pmf, and can therefore also be estimated using the
143143
with 3 bins along each dimension to discretize the data.
144144

145145
```@example INFO_TUTORIAL
146-
using CausalityTools
146+
using Associations
147147
using Random; rng = Xoshiro(1234)
148148
149149
x, y = randn(rng, 1000), randn(rng, 1000)
@@ -161,7 +161,7 @@ entropies are functionals of a joint pmf, so we can still use the
161161
based discretization.
162162

163163
```@example INFO_TUTORIAL
164-
using CausalityTools
164+
using Associations
165165
using Random; rng = Xoshiro(1234)
166166
167167
x, y = randn(rng, 1000), randn(rng, 1000)
@@ -179,7 +179,7 @@ example, one can use dedicated [`MutualInformationEstimator`](@ref)s such as
179179
[`KraskovStögbauerGrassberger2`](@ref) or [`GaussianMI`](@ref):
180180

181181
```@example INFO_TUTORIAL
182-
using CausalityTools
182+
using Associations
183183
using StateSpaceSets
184184
# We'll construct two state space sets, to illustrate how we can discretize
185185
# multidimensional inputs using `CodifyPoints`.
@@ -228,7 +228,7 @@ with any count-based [`OutcomeSpace`](@ref). Here, we'll estimate [`MIShannon`](
228228
one type of encoding for the first variable, and another type of encoding for the second variable.
229229

230230
```@example counts_probs_tutorial
231-
using CausalityTools
231+
using Associations
232232
using Random; rng = Xoshiro(1234)
233233
x, y = rand(rng, 100), rand(rng, 100)
234234
@@ -248,7 +248,7 @@ For more fine-grained control than [`CodifyVariables`](@ref) can offer, we can u
248248
data by discretizing each input variable in arbitrary ways.
249249

250250
```@example counts_probs_tutorial
251-
using CausalityTools
251+
using Associations
252252
using Random; rng = Xoshiro(1234)
253253
x, y = StateSpaceSet(rand(rng, 1000, 2)), StateSpaceSet(rand(rng, 1000, 3))
254254

docs/src/assets/logo-dark.png

-9.2 KB
Binary file not shown.

0 commit comments

Comments
 (0)