@@ -8,7 +8,7 @@ generates a `NFFTOpImpl` which evaluates the MRI Fourier signal encoding operato
88* `shape::NTuple{D,Int64}` - size of image to encode/reconstruct
99* `tr` - Either a `Trajectory` object, or a `ND x Nsamples` matrix for an ND-dimenensional (e.g. 2D or 3D) NFFT with `Nsamples` k-space samples
1010* (`nodes=nothing`) - Array containg the trajectory nodes (redundant)
11- * (`kargs`) - additional keyword arguments
11+ * (`kargs`) - additional keyword arguments for the NFFT plan
1212"""
1313function LinearOperatorCollection. NFFTOp (:: Type{T} ;
1414 shape:: Tuple , nodes:: AbstractMatrix{U} , toeplitz= false , oversamplingFactor= 1.25 ,
@@ -41,8 +41,8 @@ LinearOperators.storage_type(op::NFFTOpImpl) = typeof(op.Mv5)
4141function NFFTOpImpl (shape:: Tuple , tr:: AbstractMatrix{T} ; toeplitz= false , oversamplingFactor= 1.25 , kernelSize= 3 , S = Vector{Complex{T}}, kargs... ) where {T}
4242
4343 baseArrayType = Base. typename (S). wrapper # https://github.com/JuliaLang/julia/issues/35543
44- plan = plan_nfft (baseArrayType, tr, shape, m= kernelSize, σ= oversamplingFactor, # precompute=AbstractNFFTs.TENSOR,
45- fftflags= FFTW. ESTIMATE, blocking= true )
44+ plan = plan_nfft (baseArrayType, tr, shape, m= kernelSize, σ= oversamplingFactor,
45+ fftflags= FFTW. ESTIMATE, blocking= true , kargs ... )
4646
4747 return NFFTOpImpl {eltype(S), S, typeof(plan)} (size (tr,2 ), prod (shape), false , false
4848 , (res,x) -> produ! (res,plan,x)
0 commit comments