Skip to content

Commit 5157276

Browse files
committed
Remove fixed precompute plan keyword argument and instead pass in given kwargs
1 parent 485faec commit 5157276

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

ext/LinearOperatorNFFTExt/NFFTOp.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ generates a `NFFTOpImpl` which evaluates the MRI Fourier signal encoding operato
88
* `shape::NTuple{D,Int64}` - size of image to encode/reconstruct
99
* `tr` - Either a `Trajectory` object, or a `ND x Nsamples` matrix for an ND-dimenensional (e.g. 2D or 3D) NFFT with `Nsamples` k-space samples
1010
* (`nodes=nothing`) - Array containg the trajectory nodes (redundant)
11-
* (`kargs`) - additional keyword arguments
11+
* (`kargs`) - additional keyword arguments for the NFFT plan
1212
"""
1313
function LinearOperatorCollection.NFFTOp(::Type{T};
1414
shape::Tuple, nodes::AbstractMatrix{U}, toeplitz=false, oversamplingFactor=1.25,
@@ -41,8 +41,8 @@ LinearOperators.storage_type(op::NFFTOpImpl) = typeof(op.Mv5)
4141
function NFFTOpImpl(shape::Tuple, tr::AbstractMatrix{T}; toeplitz=false, oversamplingFactor=1.25, kernelSize=3, S = Vector{Complex{T}}, kargs...) where {T}
4242

4343
baseArrayType = Base.typename(S).wrapper # https://github.com/JuliaLang/julia/issues/35543
44-
plan = plan_nfft(baseArrayType, tr, shape, m=kernelSize, σ=oversamplingFactor, # precompute=AbstractNFFTs.TENSOR,
45-
fftflags=FFTW.ESTIMATE, blocking=true)
44+
plan = plan_nfft(baseArrayType, tr, shape, m=kernelSize, σ=oversamplingFactor,
45+
fftflags=FFTW.ESTIMATE, blocking=true, kargs...)
4646

4747
return NFFTOpImpl{eltype(S), S, typeof(plan)}(size(tr,2), prod(shape), false, false
4848
, (res,x) -> produ!(res,plan,x)

0 commit comments

Comments
 (0)