Skip to content

Commit 04dfc9f

Browse files
fixed deep learning for single data points
1 parent 6523466 commit 04dfc9f

File tree

4 files changed

+6
-5
lines changed

4 files changed

+6
-5
lines changed

src/standardized/IVIM_NEToptim.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,8 @@ def ivim_fit(self, signals, bvalues, **kwargs):
8888
"""
8989
if not np.array_equal(bvalues, self.bvalues):
9090
raise ValueError("bvalue list at fitting must be identical as the one at initiation, otherwise it will not run")
91-
91+
if np.shape(np.shape(signals)) == (1,):
92+
signals=signals[np.newaxis, :]
9293
paramsNN = deep.predict_IVIM(signals, self.bvalues, self.net, self.arg)
9394

9495
results = {}

src/standardized/Super_IVIM_DC.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -99,7 +99,8 @@ def ivim_fit(self, signals, bvalues, **kwargs):
9999
"""
100100
if not np.array_equal(bvalues, self.bvalues):
101101
raise ValueError("bvalue list at fitting must be identical as the one at initiation, otherwise it will not run")
102-
102+
if np.shape(np.shape(signals)) == (1,):
103+
signals=signals[np.newaxis, :]
103104
Dp, Dt, f, S0_superivimdc = infer_from_signal(
104105
signal=signals,
105106
bvalues=self.bvalues,

tests/IVIMmodels/unit_tests/algorithms.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,14 @@
11
{
22
"algorithms": [
33
"IVIM_NEToptim",
4+
"Super_IVIM_DC",
45
"TCML_TechnionIIT_lsqlm",
56
"TCML_TechnionIIT_lsqtrf",
67
"TCML_TechnionIIT_lsqBOBYQA",
78
"TCML_TechnionIIT_lsq_sls_lm",
89
"TCML_TechnionIIT_lsq_sls_trf",
910
"TCML_TechnionIIT_lsq_sls_BOBYQA",
1011
"TCML_TechnionIIT_SLS",
11-
"Super_IVIM_DC",
1212
"ASD_MemorialSloanKettering_QAMPER_IVIM",
1313
"ETP_SRI_LinearFitting",
1414
"IAR_LU_biexp",

utilities/data_simulation/GenerateData.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -192,15 +192,14 @@ def simulate_training_data(self, bvalues, SNR = (5,100), n = 1000000, Drange = (
192192
#data_sim = np.zeros([len(D), len(bvalues)])
193193
bvalues = np.array(bvalues)
194194
if type(SNR) == tuple:
195-
noise_std = 1/SNR[1] + test[:,3] * (1/SNR[0] - 1/SNR[1])
195+
noise_std = np.array(1/SNR[1] + test[:,3] * (1/SNR[0] - 1/SNR[1]))
196196
addnoise = True
197197
elif SNR == 0:
198198
addnoise = False
199199
noise_std = np.ones((n, 1))
200200
else:
201201
noise_std = np.full((n, 1), 1/SNR)
202202
addnoise = True
203-
noise_std = noise_std[:, np.newaxis]
204203
# loop over array to fill with simulated IVIM data
205204
bvalues = np.array(bvalues).reshape(1, -1)
206205
data_sim = 1 * (f * np.exp(-bvalues * Dp) + (1 - f) * np.exp(-bvalues * D))

0 commit comments

Comments
 (0)