|
| 1 | +# 481_WHC |
| 2 | +[](https://doi.org/10.5281/zenodo.17690769)  [](https://deepwiki.com/PINTO0309/whc) |
| 3 | + |
| 4 | +Waving Hand Classification. Ultrafast 1x3x4x32x32 3DConv gesture estimation. |
| 5 | + |
| 6 | +https://github.com/user-attachments/assets/c6b38d56-48b7-4609-bae1-f607c21ba423 |
| 7 | + |
| 8 | +https://github.com/user-attachments/assets/7e9f8763-839f-46d2-98b1-320170f8ed10 |
| 9 | + |
| 10 | +|Variant|Size|Seq|F1|CPU<br>inference<br>latency|ONNX<br>static seq|ONNX<br>dynamic seq| |
| 11 | +|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |
| 12 | +|S|1.1 MB|4|0.9821|0.31 ms|[Download](https://github.com/PINTO0309/WHC/releases/download/onnx/whc_seq_3dcnn_4x32x32.onnx)|[Download](https://github.com/PINTO0309/WHC/releases/download/onnx/whc_seq_3dcnn_T4x32x32.onnx)| |
| 13 | +|M|1.1 MB|6|0.9916|0.46 ms|[Download](https://github.com/PINTO0309/WHC/releases/download/onnx/whc_seq_3dcnn_6x32x32.onnx)|[Download](https://github.com/PINTO0309/WHC/releases/download/onnx/whc_seq_3dcnn_T6x32x32.onnx)| |
| 14 | +|L|1.1 MB|8|0.9940|0.37 ms|[Download](https://github.com/PINTO0309/WHC/releases/download/onnx/whc_seq_3dcnn_8x32x32.onnx)|[Download](https://github.com/PINTO0309/WHC/releases/download/onnx/whc_seq_3dcnn_T8x32x32.onnx)| |
| 15 | + |
| 16 | +## Data sample |
| 17 | + |
| 18 | +|1|2|3|4| |
| 19 | +|:-:|:-:|:-:|:-:| |
| 20 | +|<img width="32" height="32" alt="image" src="https://github.com/user-attachments/assets/a5ac4472-9ab9-42ce-85f3-baa93cfb2884" />|<img width="32" height="32" alt="image" src="https://github.com/user-attachments/assets/dc9bb1c7-8757-4fe7-823f-a1be1ac3b5b7" />|<img width="32" height="32" alt="image" src="https://github.com/user-attachments/assets/1399a80d-b249-4c0b-8636-4e58a0ba4188" />|<img width="32" height="32" alt="image" src="https://github.com/user-attachments/assets/c3edcc98-a17b-4c4f-93ab-596f521bb27c" />| |
| 21 | + |
| 22 | +## Inference |
| 23 | + |
| 24 | +```bash |
| 25 | +uv run python demo_whc.py \ |
| 26 | +-wm whc_seq_3dcnn_4x32x32.onnx \ |
| 27 | +-v 0 \ |
| 28 | +-ep cuda \ |
| 29 | +-dlr -dnm -dgm -dhm -dhd |
| 30 | + |
| 31 | +uv run python demo_whc.py \ |
| 32 | +-wm whc_seq_3dcnn_4x32x32.onnx \ |
| 33 | +-v 0 \ |
| 34 | +-ep tensorrt \ |
| 35 | +-dlr -dnm -dgm -dhm -dhd |
| 36 | +``` |
| 37 | + |
| 38 | +## Arch |
| 39 | + |
| 40 | +<img width="150" alt="whc_seq_3dcnn_4x32x32" src="https://github.com/user-attachments/assets/66c03363-b62c-4868-9c34-f88574e44466" /> |
| 41 | + |
| 42 | +## Ultra-lightweight classification model series |
| 43 | +1. [VSDLM: Visual-only speech detection driven by lip movements](https://github.com/PINTO0309/VSDLM) - MIT License |
| 44 | +2. [OCEC: Open closed eyes classification. Ultra-fast wink and blink estimation model](https://github.com/PINTO0309/OCEC) - MIT License |
| 45 | +3. [PGC: Ultrafast pointing gesture classification](https://github.com/PINTO0309/PGC) - MIT License |
| 46 | +4. [SC: Ultrafast sitting classification](https://github.com/PINTO0309/SC) - MIT License |
| 47 | +5. [PUC: Phone Usage Classifier is a three-class image classification pipeline for understanding how people |
| 48 | +interact with smartphones](https://github.com/PINTO0309/PUC) - MIT License |
| 49 | +6. [HSC: Happy smile classifier](https://github.com/PINTO0309/HSC) - MIT License |
| 50 | +7. [WHC: Waving Hand Classification](https://github.com/PINTO0309/WHC) - MIT License |
| 51 | + |
| 52 | +## Citation |
| 53 | + |
| 54 | +If you find this project useful, please consider citing: |
| 55 | + |
| 56 | +```bibtex |
| 57 | +@software{hyodo2025whc, |
| 58 | + author = {Katsuya Hyodo}, |
| 59 | + title = {PINTO0309/WHC}, |
| 60 | + month = {11}, |
| 61 | + year = {2025}, |
| 62 | + publisher = {Zenodo}, |
| 63 | + doi = {10.5281/zenodo.17690769}, |
| 64 | + url = {https://github.com/PINTO0309/whc}, |
| 65 | + abstract = {Waving Hand Classification.}, |
| 66 | +} |
| 67 | +``` |
| 68 | + |
| 69 | +## Acknowledgments |
| 70 | + |
| 71 | +- https://github.com/PINTO0309/PINTO_model_zoo/tree/main/472_DEIMv2-Wholebody34: Apache 2.0 License |
| 72 | + ```bibtex |
| 73 | + @software{DEIMv2-Wholebody34, |
| 74 | + author={Katsuya Hyodo}, |
| 75 | + title={Lightweight human detection models generated on high-quality human data sets. It can detect objects with high accuracy and speed in a total of 28 classes: body, adult, child, male, female, body_with_wheelchair, body_with_crutches, head, front, right-front, right-side, right-back, back, left-back, left-side, left-front, face, eye, nose, mouth, ear, collarbone, shoulder, solar_plexus, elbow, wrist, hand, hand_left, hand_right, abdomen, hip_joint, knee, ankle, foot.}, |
| 76 | + url={https://github.com/PINTO0309/PINTO_model_zoo/tree/main/472_DEIMv2-Wholebody34}, |
| 77 | + year={2025}, |
| 78 | + month={10}, |
| 79 | + doi={10.5281/zenodo.17625710} |
| 80 | + } |
| 81 | + ``` |
0 commit comments