Skip to content

Commit 00541d4

Browse files
committed
Aqua and typos CI
1 parent 4bc8452 commit 00541d4

File tree

8 files changed

+37
-22
lines changed

8 files changed

+37
-22
lines changed

.github/workflows/SpellCheck.yml

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
name: Spell Check
2+
3+
on: [pull_request]
4+
5+
jobs:
6+
typos-check:
7+
name: Spell Check with Typos
8+
runs-on: ubuntu-latest
9+
steps:
10+
- name: Checkout Actions Repository
11+
uses: actions/checkout@v3
12+
- name: Check spelling
13+
uses: crate-ci/[email protected]

.typos.toml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
[default.extend-words]
2+
Teh = "Teh"

docs/src/examples/GPUs.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ using Lux, Optimization, OptimizationOptimisers, Zygote, OrdinaryDiffEq,
7979
Plots, LuxCUDA, SciMLSensitivity, Random, ComponentArrays
8080
import DiffEqFlux: NeuralODE
8181

82-
CUDA.allowscalar(false) # Makes sure no slow operations are occuring
82+
CUDA.allowscalar(false) # Makes sure no slow operations are occurring
8383

8484
#rng for Lux.setup
8585
rng = Random.default_rng()

docs/src/examples/neural_ode_weather_forecast.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ This example is adapted from [Forecasting the weather with neural ODEs - Sebatia
55

66
## The data
77

8-
The data is a four-dimensional dataset of daily temperature, humidity, wind speed and pressure meassured over four years in the city Delhi. Let us download and plot it.
8+
The data is a four-dimensional dataset of daily temperature, humidity, wind speed and pressure measured over four years in the city Delhi. Let us download and plot it.
99

1010
```julia
1111
using Random, Dates, Optimization, ComponentArrays, Lux, OptimizationOptimisers, DiffEqFlux,
@@ -29,7 +29,7 @@ df = download_data()
2929

3030
```julia
3131
FEATURES = [:meantemp, :humidity, :wind_speed, :meanpressure]
32-
UNITS = ["Celcius", "g/m³ of water", "km/h", "hPa"]
32+
UNITS = ["Celsius", "g/m³ of water", "km/h", "hPa"]
3333
FEATURE_NAMES = ["Mean temperature", "Humidity", "Wind speed", "Mean pressure"]
3434

3535
function plot_data(df)

docs/src/index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ The following layer functions exist:
2929
- [Collocation-Based Neural ODEs (Neural ODEs without a solver, by far the fastest way!)](https://www.degruyter.com/document/doi/10.1515/sagmb-2020-0025/html)
3030
- [Multiple Shooting Neural Ordinary Differential Equations](https://arxiv.org/abs/2109.06786)
3131
- [Neural Stochastic Differential Equations (Neural SDEs)](https://arxiv.org/abs/1907.07587)
32-
- [Neural Differential-Algebriac Equations (Neural DAEs)](https://arxiv.org/abs/2001.04385)
32+
- [Neural Differential-Algebraic Equations (Neural DAEs)](https://arxiv.org/abs/2001.04385)
3333
- [Neural Delay Differential Equations (Neural DDEs)](https://arxiv.org/abs/2001.04385)
3434
- [Augmented Neural ODEs](https://arxiv.org/abs/1904.01681)
3535
- [Hamiltonian Neural Networks (with specialized second order and symplectic integrators)](https://arxiv.org/abs/1906.01563)
@@ -63,7 +63,7 @@ the precision of the arguments are correct, and anything that requires alternati
6363

6464
Lux.jl has none of these issues, is simpler to work with due to the parameters in its function calls being explicit rather than implicit global
6565
references, and achieves higher performance. It is built on the same foundations as Flux.jl, such as Zygote and NNLib, and thus it supports the
66-
same layers underneith and calls the same kernels. The better performance comes from not having the overhead of `restructure` required.
66+
same layers underneath and calls the same kernels. The better performance comes from not having the overhead of `restructure` required.
6767
Thus we highly recommend people use Lux instead and only use the Flux fallbacks for legacy code.
6868

6969
## Citation

src/hnn.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,7 @@ end
7575
"""
7676
NeuralHamiltonianDE(model, tspan, args...; kwargs...)
7777
78-
Contructs a Neural Hamiltonian DE Layer for solving Hamiltonian Problems parameterized by a
78+
Constructs a Neural Hamiltonian DE Layer for solving Hamiltonian Problems parameterized by a
7979
Neural Network [`HamiltonianNN`](@ref).
8080
8181
Arguments:

src/neural_de.jl

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ Arguments:
1919
- `tspan`: The timespan to be solved on.
2020
- `alg`: The algorithm used to solve the ODE. Defaults to `nothing`, i.e. the
2121
default algorithm from DifferentialEquations.jl.
22-
- `sensealg`: The choice of differentiation algorthm used in the backpropogation.
22+
- `sensealg`: The choice of differentiation algorithm used in the backpropogation.
2323
Defaults to an adjoint method. See
2424
the [Local Sensitivity Analysis](https://docs.sciml.ai/DiffEqDocs/stable/analysis/sensitivity/)
2525
documentation for more details.
@@ -69,7 +69,7 @@ Arguments:
6969
- `tspan`: The timespan to be solved on.
7070
- `alg`: The algorithm used to solve the ODE. Defaults to `nothing`, i.e. the
7171
default algorithm from DifferentialEquations.jl.
72-
- `sensealg`: The choice of differentiation algorthm used in the backpropogation.
72+
- `sensealg`: The choice of differentiation algorithm used in the backpropogation.
7373
- `kwargs`: Additional arguments splatted to the ODE solver. See the
7474
[Common Solver Arguments](https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/)
7575
documentation for more details.
@@ -118,7 +118,7 @@ Arguments:
118118
- `nbrown`: The number of Brownian processes
119119
- `alg`: The algorithm used to solve the ODE. Defaults to `nothing`, i.e. the
120120
default algorithm from DifferentialEquations.jl.
121-
- `sensealg`: The choice of differentiation algorthm used in the backpropogation.
121+
- `sensealg`: The choice of differentiation algorithm used in the backpropogation.
122122
- `kwargs`: Additional arguments splatted to the ODE solver. See the
123123
[Common Solver Arguments](https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/)
124124
documentation for more details.
@@ -172,7 +172,7 @@ Arguments:
172172
- `lags`: Defines the lagged values that should be utilized in the neural network.
173173
- `alg`: The algorithm used to solve the ODE. Defaults to `nothing`, i.e. the
174174
default algorithm from DifferentialEquations.jl.
175-
- `sensealg`: The choice of differentiation algorthm used in the backpropogation.
175+
- `sensealg`: The choice of differentiation algorithm used in the backpropogation.
176176
Defaults to using reverse-mode automatic differentiation via Tracker.jl
177177
- `kwargs`: Additional arguments splatted to the ODE solver. See the
178178
[Common Solver Arguments](https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/)
@@ -219,11 +219,11 @@ Arguments:
219219
derivative function. Should take an input of size `x` and produce the residual of
220220
`f(dx,x,t)` for only the differential variables.
221221
- `constraints_model`: A function `constraints_model(u,p,t)` for the fixed
222-
constaints to impose on the algebraic equations.
222+
constraints to impose on the algebraic equations.
223223
- `tspan`: The timespan to be solved on.
224224
- `alg`: The algorithm used to solve the ODE. Defaults to `nothing`, i.e. the
225225
default algorithm from DifferentialEquations.jl.
226-
- `sensealg`: The choice of differentiation algorthm used in the backpropogation.
226+
- `sensealg`: The choice of differentiation algorithm used in the backpropogation.
227227
Defaults to using reverse-mode automatic differentiation via Tracker.jl
228228
- `kwargs`: Additional arguments splatted to the ODE solver. See the
229229
[Common Solver Arguments](https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/)
@@ -286,7 +286,7 @@ constraint equations.
286286
Arguments:
287287
288288
- `model`: A Flux.Chain or Lux.AbstractExplicitLayer neural network that defines the ̇`f(u,p,t)`
289-
- `constraints_model`: A function `constraints_model(u,p,t)` for the fixed constaints to
289+
- `constraints_model`: A function `constraints_model(u,p,t)` for the fixed constraints to
290290
impose on the algebraic equations.
291291
- `tspan`: The timespan to be solved on.
292292
- `mass_matrix`: The mass matrix associated with the DAE
@@ -295,7 +295,7 @@ Arguments:
295295
compatible with singular mass matrices. Consult the
296296
[DAE solvers](https://docs.sciml.ai/DiffEqDocs/stable/solvers/dae_solve/) documentation
297297
for more details.
298-
- `sensealg`: The choice of differentiation algorthm used in the backpropogation.
298+
- `sensealg`: The choice of differentiation algorithm used in the backpropogation.
299299
Defaults to an adjoint method. See
300300
the [Local Sensitivity Analysis](https://docs.sciml.ai/DiffEqDocs/stable/analysis/sensitivity/)
301301
documentation for more details.

test/runtests.jl

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -72,16 +72,16 @@ const is_CI = haskey(ENV, "CI")
7272
if GROUP == "All" || GROUP == "Aqua"
7373
@safetestset "Aqua Q/A" begin
7474
using Aqua, DiffEqFlux, LinearAlgebra
75-
76-
# TODO: Enable persistent tasks once the downstream PRs are merged
77-
Aqua.test_all(DiffEqFlux; ambiguities = false, piracies = false,
78-
persistent_tasks = false)
79-
80-
Aqua.test_ambiguities(DiffEqFlux; recursive = false)
81-
75+
Aqua.find_persistent_tasks_deps(DiffEqFlux)
76+
Aqua.test_ambiguities(DiffEqFlux, recursive = false)
77+
Aqua.test_deps_compat(DiffEqFlux)
78+
Aqua.test_piracies(DiffEqFlux; treat_as_own = [LinearAlgebra.Tridiagonal])
79+
Aqua.test_project_extras(DiffEqFlux)
80+
Aqua.test_stale_deps(DiffEqFlux)
81+
Aqua.test_unbound_args(DiffEqFlux)
82+
Aqua.test_undefined_exports(DiffEqFlux)
8283
# FIXME: Remove Tridiagonal piracy after
8384
# https://github.com/JuliaDiff/ChainRules.jl/issues/713 is merged!
84-
Aqua.test_piracies(DiffEqFlux; treat_as_own = [LinearAlgebra.Tridiagonal])
8585
end
8686
end
8787
end

0 commit comments

Comments
 (0)