|
1 | 1 | KITTI-360 |
2 | 2 | --------- |
3 | 3 |
|
4 | | -.. sidebar:: Dataset Name |
| 4 | +.. dropdown:: Quick Links |
| 5 | + :open: |
| 6 | + |
| 7 | + .. list-table:: |
| 8 | + :header-rows: 0 |
| 9 | + :widths: 20 60 |
| 10 | + |
| 11 | + * - |
| 12 | + - |
| 13 | + * - :octicon:`file` Paper |
| 14 | + - `KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D <https://arxiv.org/abs/2109.13410>`_ |
| 15 | + * - :octicon:`download` Download |
| 16 | + - `cvlibs.net/datasets/kitti-360 <https://www.cvlibs.net/datasets/kitti-360/>`_ |
| 17 | + * - :octicon:`mark-github` Code |
| 18 | + - `github.com/autonomousvision/kitti360scripts <https://github.com/autonomousvision/kitti360scripts>`_ |
| 19 | + * - :octicon:`law` License |
| 20 | + - |
| 21 | + - `CC BY-NC-SA 3.0 <https://creativecommons.org/licenses/by-nc-sa/3.0/>`_ |
| 22 | + - MIT License |
| 23 | + * - :octicon:`database` Available splits |
| 24 | + - n/a |
| 25 | + |
| 26 | + |
| 27 | +Available Modalities |
| 28 | +~~~~~~~~~~~~~~~~~~~~ |
5 | 29 |
|
6 | | - .. image:: https://www.cvlibs.net/datasets/kitti-360/images/example/3d/semantic/02400.jpg |
7 | | - :alt: Dataset sample image |
8 | | - :width: 290px |
| 30 | +.. list-table:: |
| 31 | + :header-rows: 1 |
| 32 | + :widths: 30 5 70 |
9 | 33 |
|
10 | | - | **Paper:** `KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D <https://arxiv.org/pdf/2109.13410>`_ |
11 | | - | **Download:** `www.cvlibs.net/datasets/kitti-360 <https://www.cvlibs.net/datasets/kitti-360/user_login.php>`_ |
12 | | - | **Code:** `www.github.com/autonomousvision/kitti360Scripts <https://github.com/autonomousvision/kitti360Scripts>`_ |
13 | | - | **Documentation:** `kitti-360 Document<https://www.cvlibs.net/datasets/kitti-360/documentation.php>`_ |
14 | | - | **License:** [License type] |
15 | | - | **Duration:** 320k image |
16 | | - | **Supported Versions:** [Yes/No/Conditions] |
17 | | - | **Redistribution:** [Yes/No/Conditions] |
| 34 | + * - **Name** |
| 35 | + - **Available** |
| 36 | + - **Description** |
| 37 | + * - Ego Vehicle |
| 38 | + - ✓ / (✓) / X |
| 39 | + - ..., see :class:`~py123d.datatypes.vehicle_state.EgoStateSE3`. |
| 40 | + * - Map |
| 41 | + - ✓ / (✓) / X |
| 42 | + - ..., see :class:`~py123d.api.MapAPI`. |
| 43 | + * - Bounding Boxes |
| 44 | + - ✓ / (✓) / X |
| 45 | + - ..., see :class:`~py123d.datatypes.detections.BoxDetectionWrapper`. |
| 46 | + * - Traffic Lights |
| 47 | + - ✓ / (✓) / X |
| 48 | + - ..., see :class:`~py123d.datatypes.detections.TrafficLightDetectionWrapper`. |
| 49 | + * - Pinhole Cameras |
| 50 | + - ✓ / (✓) / X |
| 51 | + - ..., see :class:`~py123d.datatypes.sensors.PinholeCamera`. |
| 52 | + * - Fisheye Cameras |
| 53 | + - ✓ / (✓) / X |
| 54 | + - ..., see :class:`~py123d.datatypes.sensors.FisheyeCamera`. |
| 55 | + * - LiDARs |
| 56 | + - ✓ / (✓) / X |
| 57 | + - ..., see :class:`~py123d.datatypes.sensors.LiDAR`. |
18 | 58 |
|
19 | | -Description |
20 | | -~~~~~~~~~~~ |
21 | 59 |
|
22 | | -[Provide a detailed description of the dataset here, including its purpose, collection methodology, and key characteristics.] |
| 60 | +Download |
| 61 | +~~~~~~~~ |
| 62 | + |
| 63 | +... |
| 64 | + |
| 65 | +The 123D conversion expects the following directory structure: |
23 | 66 |
|
24 | 67 | Installation |
25 | 68 | ~~~~~~~~~~~~ |
26 | 69 |
|
27 | | -[Instructions for installing or accessing the dataset] |
| 70 | +For *Template*, additional installation that are included as optional dependencies in ``py123d`` are required. You can install them via: |
28 | 71 |
|
29 | 72 | .. code-block:: bash |
30 | 73 |
|
31 | | - # Example installation commands |
32 | | - pip install py123d[dataset_name] |
33 | | - # or |
34 | | - wget https://example.com/dataset.zip |
| 74 | + pip install py123d[template] |
35 | 75 |
|
36 | | -Available Data |
37 | | -~~~~~~~~~~~~~~ |
| 76 | +Or if you are installing from source: |
38 | 77 |
|
39 | | -.. list-table:: |
40 | | - :header-rows: 1 |
41 | | - :widths: 30 5 70 |
| 78 | +.. code-block:: bash |
| 79 | +
|
| 80 | + pip install -e .[template] |
| 81 | +
|
| 82 | +
|
| 83 | +Dataset Specific |
| 84 | +~~~~~~~~~~~~~~~~ |
| 85 | + |
| 86 | +.. dropdown:: Box Detection Labels |
| 87 | + |
| 88 | + .. autoclass:: py123d.conversion.registry.DefaultBoxDetectionLabel |
| 89 | + :members: |
| 90 | + :no-inherited-members: |
| 91 | + |
| 92 | +.. dropdown:: LiDAR Index |
| 93 | + |
| 94 | + .. autoclass:: py123d.conversion.registry.DefaultLiDARIndex |
| 95 | + :members: |
| 96 | + :no-inherited-members: |
42 | 97 |
|
43 | 98 |
|
44 | | - * - **Name** |
45 | | - - **Available** |
46 | | - - **Description** |
47 | | - * - Ego Vehicle |
48 | | - - X |
49 | | - - [Description of ego vehicle data] |
50 | | - * - Map |
51 | | - - X |
52 | | - - [Description of ego vehicle data] |
53 | | - * - Bounding Boxes |
54 | | - - X |
55 | | - - [Description of ego vehicle data] |
56 | | - * - Traffic Lights |
57 | | - - X |
58 | | - - [Description of ego vehicle data] |
59 | | - * - Cameras |
60 | | - - X |
61 | | - - [Description of ego vehicle data] |
62 | | - * - LiDARs |
63 | | - - X |
64 | | - - [Description of ego vehicle data] |
65 | 99 |
|
66 | | -Dataset Specific Issues |
67 | | -~~~~~~~~~~~~~~~~~~~~~~~ |
| 100 | +Dataset Issues |
| 101 | +~~~~~~~~~~~~~~ |
68 | 102 |
|
69 | 103 | [Document any known issues, limitations, or considerations when using this dataset] |
70 | 104 |
|
71 | 105 | * Issue 1: Description |
72 | 106 | * Issue 2: Description |
73 | 107 | * Issue 3: Description |
74 | 108 |
|
| 109 | + |
| 110 | +Citation |
| 111 | +~~~~~~~~ |
| 112 | + |
| 113 | +If you use *Template* in your research, please cite: |
| 114 | + |
| 115 | +.. code-block:: bibtex |
| 116 | +
|
| 117 | + @article{AuthorYearConference, |
| 118 | + title={Template: Some Dataset for Autonomous Driving}, |
| 119 | + author={}, |
| 120 | + booktitle={}, |
| 121 | + year={} |
| 122 | + } |
| 123 | +
|
| 124 | +
|
75 | 125 | Citation |
76 | 126 | ~~~~~~~~ |
77 | 127 |
|
|
0 commit comments