Skip to content

typo #116

@roblanf

Description

@roblanf

Figure \@ref(fig:sampling-schematic) shows how these key concepts are related to each other. The variable of interest (e.g., vote outcome in each district) has some distribution in the population, with a population mean and a population standard deviation. A sample will consist of a set of specific observations. The number of the individual observations in the sample is called the *sample size.* From the sample we can calculate a sample mean and a sample standard deviation, and these will generally differ from the population mean and standard deviation. Finally, we can define a *sampling distribution,* which is the distribution of estimates we would obtain if we repeated the sampling process many times. The width of the sampling distribution is called the *standard error,* and it tells us how precise our estimates are. In other words, the standard error provides a measure of the uncertainty associated with our parameter estimate. As a generaly rule, the larger the sample size, the smaller the standard error and thus the less uncertain the estimate.

"generaly" -> "general"

I assign the copyright of this contribution to Claus O. Wilke

P.S. GREAT book!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions