|
| 1 | +--- |
| 2 | +title: "Sanitizing and cleaning the Oceania-UK dataset" |
| 3 | +output: |
| 4 | + html_document: |
| 5 | + keep_md: yes |
| 6 | +--- |
| 7 | + |
| 8 | +## Introduction |
| 9 | + |
| 10 | +Here we apply a sequence of steps to reproducibly sanitize the oceania-uk dataset. We start from `oceania-uk-data.csv`, which is the result of applying the following steps to the original spreadsheet: |
| 11 | + |
| 12 | +1. Insert column _continent_ to Australia data table between _population size_ and _life expectancy_. |
| 13 | +2. Change column A column header from _continent_ to _country_. (This is for the Australia data table.) |
| 14 | +3. Move the other (than Australia) per-country tables (only UK at present) under the Australia table. |
| 15 | + |
| 16 | +No additional manipulation has been done yet. |
| 17 | + |
| 18 | +## Loading libraries and other setup |
| 19 | + |
| 20 | +```{r} |
| 21 | +# the name of the file containing the dataset: |
| 22 | +datafile <- "oceania-uk-data.csv" |
| 23 | +
|
| 24 | +# the name of the metadata file: |
| 25 | +metafile <- paste(paste(strsplit(datafile, split = "-")[[1]][c(1,2)], |
| 26 | + collapse="-"), |
| 27 | + "metadata.txt", |
| 28 | + sep = "-") |
| 29 | +metafile |
| 30 | +
|
| 31 | +# the name of the metadata file: |
| 32 | +outfile <- paste(paste(strsplit(datafile, split = "-")[[1]][c(1,2)], |
| 33 | + collapse="-"), |
| 34 | + "sanitized.csv", |
| 35 | + sep = "-") |
| 36 | +outfile |
| 37 | +``` |
| 38 | + |
| 39 | +## Moving metadata out into a separate file |
| 40 | + |
| 41 | +The first two lines are metadata. Read those in and write out to a metadata file: |
| 42 | + |
| 43 | +```{r} |
| 44 | +file.header <- scan(datafile, |
| 45 | + what = "character", |
| 46 | + sep = ",", |
| 47 | + nlines = 2) |
| 48 | +file.header |
| 49 | +
|
| 50 | +writeLines(file.header[1], metafile) # We only want what is in the first cell |
| 51 | +``` |
| 52 | + |
| 53 | +## Sanitizing the data |
| 54 | + |
| 55 | +Read in data, standardizing NA values, skipping blank lines, properly setting column header names: |
| 56 | + |
| 57 | +```{r} |
| 58 | +data.in <- read.table(datafile, |
| 59 | + sep = ",", |
| 60 | + skip = 4, |
| 61 | + col.names = c("country", |
| 62 | + "year", |
| 63 | + "pop", |
| 64 | + "continent", |
| 65 | + "lifeExp", |
| 66 | + "gdpPercap", |
| 67 | + "blank", |
| 68 | + "Notes"), |
| 69 | + blank.lines.skip=TRUE, |
| 70 | + na.strings = c("N/A", "NA", "")) |
| 71 | +``` |
| 72 | + |
| 73 | +Remove the empty column: |
| 74 | +```{r} |
| 75 | +data.in <- subset(data.in, select = -c(blank)) |
| 76 | +``` |
| 77 | + |
| 78 | +Fix the typo in the country column and remove excess factor levels: |
| 79 | +```{r} |
| 80 | +data.in$country[data.in$country == "Australa"] <- "Australia" |
| 81 | +data.in$country <- factor(data.in$country) |
| 82 | +
|
| 83 | +# Test: we should be left with 2 factors now in country: |
| 84 | +if (nlevels(data.in$country) > 2) { |
| 85 | + cat("Data integrity alert: more than 2 factors for country") |
| 86 | +} |
| 87 | +``` |
| 88 | + |
| 89 | +Fix the typo in the population column: |
| 90 | +```{r} |
| 91 | +pop.is.typo <- is.na(as.numeric(as.character(data.in$pop))) |
| 92 | +pop.typo <- strsplit(as.character(data.in$pop[pop.is.typo]),"")[[1]] |
| 93 | +pop.typo[pop.typo == "O"] <- "0" |
| 94 | +data.in$pop <- as.numeric(as.character(data.in$pop)) |
| 95 | +data.in$pop[pop.is.typo] <- as.numeric(paste(pop.typo,collapse="")) |
| 96 | +``` |
| 97 | + |
| 98 | +## Write sanitized data to csv |
| 99 | + |
| 100 | +```{r} |
| 101 | +write.csv(data.in, file = outfile) |
| 102 | +``` |
0 commit comments