Skip to content
This repository was archived by the owner on Nov 13, 2023. It is now read-only.
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
241 changes: 241 additions & 0 deletions pyalgotrade/barfeed/customfeed.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
# PyAlgoTrade
#
# Copyright 2011-2015 Gabriel Martin Becedillas Ruiz
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
.. moduleauthor:: Alex McFarlane <[email protected]>
"""

from pyalgotrade.utils import dt
from pyalgotrade.barfeed import membf
from pyalgotrade.barfeed import csvfeed
from pyalgotrade import bar

import datetime
import pytz


# Interface for csv row parsers.
class RowParser(object):
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This RowParser class is not used, and it can be removed.

def parseBar(self, csvRowDict):
raise NotImplementedError()

def getFieldNames(self):
raise NotImplementedError()

def getDelimiter(self):
raise NotImplementedError()


# Interface for bar filters.
class BarFilter(object):
def includeBar(self, bar_):
raise NotImplementedError()


class BarFeed(membf.BarFeed):
"""Base class for CSV file based :class:`pyalgotrade.barfeed.BarFeed`.

.. note::
This is a base class and should not be used directly.
"""

def __init__(self, frequency, maxLen=None):
super(BarFeed, self).__init__(frequency, maxLen)

self.__barFilter = None
self.__dailyTime = datetime.time(0, 0, 0)

def getDailyBarTime(self):
return self.__dailyTime

def setDailyBarTime(self, time):
self.__dailyTime = time

def getBarFilter(self):
return self.__barFilter

def setBarFilter(self, barFilter):
self.__barFilter = barFilter

def _addBarsFromListofDicts(self, instrument, iterable, rowParser):
loadedBars = map(rowParser.parseBar, iterable)
loadedBars = filter(
lambda bar_: (bar_ is not None) and
(self.__barFilter is None or self.__barFilter.includeBar(bar_)),
loadedBars
)
self.addBarsFromSequence(instrument, loadedBars)

def _addBarsFromDataFrame(self, instrument, df, rowParser):
# Load the DataFrame
# replicate FastDictReader & reduce to required columns
list_of_dicts = df.fillna('').astype(str).to_dict('records')
self._addBarsFromListofDicts(instrument, list_of_dicts, rowParser)


class Feed(BarFeed):
"""A BarFeed that loads bars from a custom feed that has the following columns:
::

Date Time Open Close High Low Volume Adj Close
2015-08-14 09:06:00 0.00690 0.00690 0.00690 0.00690 1.346117 9567


:param frequency: The frequency of the bars. Check :class:`pyalgotrade.bar.Frequency`.
:param timezone: The default timezone to use to localize bars. Check :mod:`pyalgotrade.marketsession`.
:type timezone: A pytz timezone.
:param maxLen: The maximum number of values that the :class:`pyalgotrade.dataseries.bards.BarDataSeries` will hold.
Once a bounded length is full, when new items are added, a corresponding number of items are discarded from the
opposite end. If None then dataseries.DEFAULT_MAX_LEN is used.
:type maxLen: int.

.. note::
* The data should be sampled across regular time points, you can
regularlise (e.g. for 5min intervals) as::

df = df.set_index('Date Time').resample('s').interpolate().resample('5T').asfreq()
df = df.dropna().reset_index()
which is described in a SO [post](https://stackoverflow.com/a/39730730/4013571)
* It is ok if the **Adj Close** column is empty.
* When working with multiple instruments:

* If all the instruments loaded are in the same timezone, then the timezone parameter may not be specified.
* If any of the instruments loaded are in different timezones, then the timezone parameter should be set.
"""

def __init__(self, frequency, timezone=None, maxLen=None):
super(Feed, self).__init__(frequency, maxLen)

self.__timezone = timezone
# Assume bars don't have adjusted close. This will be set to True after
# loading the first file if the adj_close column is there.
self.__haveAdjClose = False

self.__barClass = bar.BasicBar

self.__dateTimeFormat = "%Y-%m-%d %H:%M:%S"
self.__columnNames = {
"datetime": "Date Time",
"open": "Open",
"high": "High",
"low": "Low",
"close": "Close",
"volume": "Volume",
"adj_close": "Adj Close",
}
# self.__dateTimeFormat expects time to be set so there is no need to
# fix time.
self.setDailyBarTime(None)

def barsHaveAdjClose(self):
return self.__haveAdjClose

def setNoAdjClose(self):
self.__columnNames["adj_close"] = None
self.__haveAdjClose = False

def setColumnName(self, col, name):
self.__columnNames[col] = name

def setDateTimeFormat(self, dateTimeFormat):
self.__dateTimeFormat = dateTimeFormat

def setBarClass(self, barClass):
self.__barClass = barClass

def addBarsFromDataFrame(self, instrument, df, timezone=None):
"""Loads bars for a given instrument from a Pandas DataFrame.
The instrument gets registered in the bar feed.

:param instrument: Instrument identifier.
:type instrument: string.
:param df: The pandas DataFrame
:type df: pd.DataFrame
:param timezone: The timezone to use to localize bars. Check :mod:`pyalgotrade.marketsession`.
:type timezone: A pytz timezone.
"""

if timezone is None:
timezone = self.__timezone

rowParser = csvfeed.GenericRowParser(
self.__columnNames,
self.__dateTimeFormat,
self.getDailyBarTime(),
self.getFrequency(),
timezone,
self.__barClass
)

missing_columns = [
col for col in self.__columnNames.values()
if col not in df.columns
]
if missing_columns:
raise ValueError('Missing required columns: {}'.format(repr(missing_columns)))

df = df[self.__columnNames.values()]
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This will prevent extra columns from being included on each bar.

super(Feed, self)._addBarsFromDataFrame(instrument, df, rowParser)

if rowParser.barsHaveAdjClose():
self.__haveAdjClose = True
elif self.__haveAdjClose:
raise Exception("Previous bars had adjusted close and these ones don't have.")

def addBarsFromListofDicts(self, instrument, list_of_dicts, timezone=None):
"""Loads bars for a given instrument from a list of dictionaries.
The instrument gets registered in the bar feed.

:param instrument: Instrument identifier.
:type instrument: string.
:param list_of_dicts: A list of dicts. First item should contain
columns.
:type list_of_dicts: list
:param timezone: The timezone to use to localize bars. Check :mod:`pyalgotrade.marketsession`.
:type timezone: A pytz timezone.
"""

if timezone is None:
timezone = self.__timezones

if not isinstance(list_of_dicts, (list, tuple)):
raise ValueError('This function only supports types: {list, tuple}')
if not isinstance(list_of_dicts[0], dict):
raise ValueError('List should only contain dicts')

rowParser = csvfeed.GenericRowParser(
self.__columnNames,
self.__dateTimeFormat,
self.getDailyBarTime(),
self.getFrequency(),
timezone,
self.__barClass
)

missing_columns = [
col for col in self.__columnNames.values()
if col not in list_of_dicts[0].keys()
]
if missing_columns:
raise ValueError('Missing required columns: {}'.format(repr(missing_columns)))

super(Feed, self)._addBarsFromListofDicts(
instrument, list_of_dicts, rowParser)

if rowParser.barsHaveAdjClose():
self.__haveAdjClose = True
elif self.__haveAdjClose:
raise Exception("Previous bars had adjusted close and these ones don't have.")