|
| 1 | +""" |
| 2 | +################################################################################################## |
| 3 | +# Copyright Info : Copyright (c) Davar Lab @ Hikvision Research Institute. All rights reserved. |
| 4 | +# Filename : beam_search.py |
| 5 | +# Abstract : Beam search for attention decode |
| 6 | +
|
| 7 | +# Current Version: 1.0.0 |
| 8 | +# Date : 2022-07-07 |
| 9 | +################################################################################################## |
| 10 | +""" |
| 11 | +import torch |
| 12 | +from queue import PriorityQueue |
| 13 | + |
| 14 | + |
| 15 | +class BeamSearchNode(object): |
| 16 | + """ Beam search node class """ |
| 17 | + def __init__(self, previous_node, char_id, logProb, length): |
| 18 | + """ |
| 19 | + Args: |
| 20 | + previous_node (obj:`BeamSearchNode`): node in queue |
| 21 | + char_id (dict): character id |
| 22 | + logProb (float): word probability |
| 23 | + length (int): word length |
| 24 | + """ |
| 25 | + self.prev_node = previous_node |
| 26 | + self.char_id = char_id |
| 27 | + self.logp = logProb |
| 28 | + self.leng = length |
| 29 | + |
| 30 | + def eval(self): |
| 31 | + """ Calculate beam search path score |
| 32 | +
|
| 33 | + Returns: |
| 34 | + float: beam search path score |
| 35 | + """ |
| 36 | + return self.logp / float(self.leng - 1 + 1e-6) |
| 37 | + |
| 38 | + def __lt__(self, other): |
| 39 | + """ |
| 40 | + Args: |
| 41 | + self (obj:`BeamSearchNode`): beam search node |
| 42 | + other (obj:`BeamSearchNode`): beam search node |
| 43 | + """ |
| 44 | + if self.eval() < other.eval(): |
| 45 | + return False |
| 46 | + else: |
| 47 | + return True |
| 48 | + |
| 49 | + |
| 50 | +def beam_decode(encoder_outputs, beam_width=5, topk=1): |
| 51 | + """ Beam search decode |
| 52 | +
|
| 53 | + Args: |
| 54 | + encoder_outputs (Tensor): encoder outputs tensor of shape [B, T, C] |
| 55 | + where B is the batch size and T is the maximum length of the output sentence |
| 56 | + beam_width (int): beam search width |
| 57 | + topk (int): select top-k beam search result |
| 58 | +
|
| 59 | + Returns: |
| 60 | + list(list(Tensor)): beam search decoded path |
| 61 | + """ |
| 62 | + decoded_batch = [] |
| 63 | + |
| 64 | + # decoding goes sentence by sentence |
| 65 | + for idx in range(encoder_outputs.size(0)): |
| 66 | + # Start with the start of the sentence token |
| 67 | + decoder_input = torch.tensor([[0]], device=encoder_outputs.device).long() |
| 68 | + |
| 69 | + # Number of sentence to generate |
| 70 | + endnodes = [] |
| 71 | + number_required = min((topk + 1), topk - len(endnodes)) |
| 72 | + |
| 73 | + # starting node - previous node, char id, logp, length |
| 74 | + node = BeamSearchNode(None, decoder_input, 0, 1) |
| 75 | + nodes = PriorityQueue() |
| 76 | + |
| 77 | + # start the queue |
| 78 | + nodes.put(node) |
| 79 | + qsize = 1 |
| 80 | + |
| 81 | + # start beam search |
| 82 | + while True: |
| 83 | + # give up when decoding takes too long |
| 84 | + if qsize > 2000: |
| 85 | + break |
| 86 | + |
| 87 | + # fetch the best node |
| 88 | + priority_node = nodes.get() |
| 89 | + decoder_input = priority_node.char_id |
| 90 | + |
| 91 | + if priority_node.char_id.item() == 1 and priority_node.prev_node != None: |
| 92 | + endnodes.append(priority_node) |
| 93 | + # if we reached maximum # of sentences required |
| 94 | + if len(endnodes) >= number_required: |
| 95 | + break |
| 96 | + else: |
| 97 | + continue |
| 98 | + |
| 99 | + # PUT HERE REAL BEAM SEARCH OF TOP |
| 100 | + log_prob, indexes = torch.topk(encoder_outputs[idx][priority_node.leng-1], beam_width) |
| 101 | + nextnodes = [] |
| 102 | + |
| 103 | + for new_k in range(beam_width): |
| 104 | + decoded_t = indexes[new_k].view(1, -1) |
| 105 | + log_p = log_prob[new_k].item() |
| 106 | + |
| 107 | + node = BeamSearchNode(priority_node, decoded_t, priority_node.logp + log_p, priority_node.leng + 1) |
| 108 | + # score = -node.eval() |
| 109 | + nextnodes.append(node) |
| 110 | + |
| 111 | + # put them into queue |
| 112 | + for i in range(len(nextnodes)): |
| 113 | + nextnode = nextnodes[i] |
| 114 | + nodes.put(nextnode) |
| 115 | + # increase qsize |
| 116 | + qsize += len(nextnodes) - 1 |
| 117 | + |
| 118 | + # choose nbest paths, back trace them |
| 119 | + if len(endnodes) == 0: |
| 120 | + endnodes = [nodes.get() for _ in range(topk)] |
| 121 | + |
| 122 | + utterances = [] |
| 123 | + for endnode in sorted(endnodes, key=lambda x: x.eval()): |
| 124 | + utterance = [] |
| 125 | + utterance.append(endnode.char_id) |
| 126 | + # back trace |
| 127 | + while endnode.prev_node != None: |
| 128 | + endnode = endnode.prev_node |
| 129 | + utterance.append(endnode.char_id) |
| 130 | + |
| 131 | + utterance = utterance[::-1] |
| 132 | + utterances.append(utterance) |
| 133 | + |
| 134 | + stack_utterances = [] |
| 135 | + for path_id in range(len(utterances)): |
| 136 | + stack_utterances.append(torch.stack(utterances[path_id], dim=-1).squeeze(0).squeeze(0)) |
| 137 | + decoded_batch.append(stack_utterances) |
| 138 | + |
| 139 | + return decoded_batch |
0 commit comments