@@ -129,15 +129,18 @@ theorem isOpen_inter_nonempty_of_isOpen {U : Set α} (hU : IsOpen U) :
129129 obtain ⟨y, hy, hxy⟩ := hs' hx₁
130130 exact ⟨y, hy, hVU hxy⟩
131131
132- theorem isClosed_powerset {F : Set α} (hF : IsClosed F) :
132+ /-- In the Hausdorff uniformity, the powerset of a closed set is closed. -/
133+ theorem _root_.IsClosed.powerset_hausdorff {F : Set α} (hF : IsClosed F) :
133134 IsClosed F.powerset := by
134135 simp_rw [Set.powerset, ← isOpen_compl_iff, Set.compl_setOf, ← Set.inter_compl_nonempty_iff]
135136 exact isOpen_inter_nonempty_of_isOpen hF.isOpen_compl
136137
138+ @[deprecated (since := "2025-11-23")] alias isClosed_powerset := IsClosed.powerset_hausdorff
139+
137140theorem isClopen_singleton_empty : IsClopen {(∅ : Set α)} := by
138141 constructor
139142 · rw [← Set.powerset_empty]
140- exact isClosed_powerset isClosed_empty
143+ exact isClosed_empty.powerset_hausdorff
141144 · simp_rw [isOpen_iff_mem_nhds, Set.mem_singleton_iff, forall_eq, nhds_eq_uniformity]
142145 filter_upwards [Filter.mem_lift' <| Filter.mem_lift' Filter.univ_mem] with F ⟨_, hF⟩
143146 simpa using hF
@@ -238,7 +241,7 @@ theorem isOpen_inter_nonempty_of_isOpen {s : Set α} (hs : IsOpen s) :
238241
239242theorem isClosed_subsets_of_isClosed {s : Set α} (hs : IsClosed s) :
240243 IsClosed {t : Closeds α | (t : Set α) ⊆ s} :=
241- isClosed_induced (UniformSpace.hausdorff.isClosed_powerset hs)
244+ isClosed_induced hs.powerset_hausdorff
242245
243246theorem totallyBounded_subsets_of_totallyBounded {t : Set α} (ht : TotallyBounded t) :
244247 TotallyBounded {F : Closeds α | ↑F ⊆ t} :=
@@ -327,7 +330,7 @@ theorem isOpen_inter_nonempty_of_isOpen {s : Set α} (hs : IsOpen s) :
327330
328331theorem isClosed_subsets_of_isClosed {s : Set α} (hs : IsClosed s) :
329332 IsClosed {t : Compacts α | (t : Set α) ⊆ s} :=
330- isClosed_induced (UniformSpace.hausdorff.isClosed_powerset hs)
333+ isClosed_induced hs.powerset_hausdorff
331334
332335theorem totallyBounded_subsets_of_totallyBounded {t : Set α} (ht : TotallyBounded t) :
333336 TotallyBounded {K : Compacts α | ↑K ⊆ t} :=
@@ -413,7 +416,7 @@ theorem isOpen_inter_nonempty_of_isOpen {s : Set α} (hs : IsOpen s) :
413416
414417theorem isClosed_subsets_of_isClosed {s : Set α} (hs : IsClosed s) :
415418 IsClosed {t : NonemptyCompacts α | (t : Set α) ⊆ s} :=
416- isClosed_induced (UniformSpace.hausdorff.isClosed_powerset hs)
419+ isClosed_induced hs.powerset_hausdorff
417420
418421theorem totallyBounded_subsets_of_totallyBounded {t : Set α} (ht : TotallyBounded t) :
419422 TotallyBounded {K : NonemptyCompacts α | ↑K ⊆ t} :=
0 commit comments