Skip to content

Commit 5334b1e

Browse files
committed
chore(Topology/UniformSpace/Closeds): rename UniformSpace.hausdorff.isClosed_powerset to IsClosed.powerset_hausdorff (#32022)
The new name is analogous to the one for `TotallyBounded` and allows using dot notation.
1 parent b2345a4 commit 5334b1e

File tree

1 file changed

+8
-5
lines changed

1 file changed

+8
-5
lines changed

Mathlib/Topology/UniformSpace/Closeds.lean

Lines changed: 8 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -129,15 +129,18 @@ theorem isOpen_inter_nonempty_of_isOpen {U : Set α} (hU : IsOpen U) :
129129
obtain ⟨y, hy, hxy⟩ := hs' hx₁
130130
exact ⟨y, hy, hVU hxy⟩
131131

132-
theorem isClosed_powerset {F : Set α} (hF : IsClosed F) :
132+
/-- In the Hausdorff uniformity, the powerset of a closed set is closed. -/
133+
theorem _root_.IsClosed.powerset_hausdorff {F : Set α} (hF : IsClosed F) :
133134
IsClosed F.powerset := by
134135
simp_rw [Set.powerset, ← isOpen_compl_iff, Set.compl_setOf, ← Set.inter_compl_nonempty_iff]
135136
exact isOpen_inter_nonempty_of_isOpen hF.isOpen_compl
136137

138+
@[deprecated (since := "2025-11-23")] alias isClosed_powerset := IsClosed.powerset_hausdorff
139+
137140
theorem isClopen_singleton_empty : IsClopen {(∅ : Set α)} := by
138141
constructor
139142
· rw [← Set.powerset_empty]
140-
exact isClosed_powerset isClosed_empty
143+
exact isClosed_empty.powerset_hausdorff
141144
· simp_rw [isOpen_iff_mem_nhds, Set.mem_singleton_iff, forall_eq, nhds_eq_uniformity]
142145
filter_upwards [Filter.mem_lift' <| Filter.mem_lift' Filter.univ_mem] with F ⟨_, hF⟩
143146
simpa using hF
@@ -238,7 +241,7 @@ theorem isOpen_inter_nonempty_of_isOpen {s : Set α} (hs : IsOpen s) :
238241

239242
theorem isClosed_subsets_of_isClosed {s : Set α} (hs : IsClosed s) :
240243
IsClosed {t : Closeds α | (t : Set α) ⊆ s} :=
241-
isClosed_induced (UniformSpace.hausdorff.isClosed_powerset hs)
244+
isClosed_induced hs.powerset_hausdorff
242245

243246
theorem totallyBounded_subsets_of_totallyBounded {t : Set α} (ht : TotallyBounded t) :
244247
TotallyBounded {F : Closeds α | ↑F ⊆ t} :=
@@ -327,7 +330,7 @@ theorem isOpen_inter_nonempty_of_isOpen {s : Set α} (hs : IsOpen s) :
327330

328331
theorem isClosed_subsets_of_isClosed {s : Set α} (hs : IsClosed s) :
329332
IsClosed {t : Compacts α | (t : Set α) ⊆ s} :=
330-
isClosed_induced (UniformSpace.hausdorff.isClosed_powerset hs)
333+
isClosed_induced hs.powerset_hausdorff
331334

332335
theorem totallyBounded_subsets_of_totallyBounded {t : Set α} (ht : TotallyBounded t) :
333336
TotallyBounded {K : Compacts α | ↑K ⊆ t} :=
@@ -413,7 +416,7 @@ theorem isOpen_inter_nonempty_of_isOpen {s : Set α} (hs : IsOpen s) :
413416

414417
theorem isClosed_subsets_of_isClosed {s : Set α} (hs : IsClosed s) :
415418
IsClosed {t : NonemptyCompacts α | (t : Set α) ⊆ s} :=
416-
isClosed_induced (UniformSpace.hausdorff.isClosed_powerset hs)
419+
isClosed_induced hs.powerset_hausdorff
417420

418421
theorem totallyBounded_subsets_of_totallyBounded {t : Set α} (ht : TotallyBounded t) :
419422
TotallyBounded {K : NonemptyCompacts α | ↑K ⊆ t} :=

0 commit comments

Comments
 (0)