Skip to content

Commit a23e4d4

Browse files
committed
feat(LinearAlgebra/AffineSpace/AffineSubspace/Basic): map_inf lemmas (#32015)
Add two lemmas about affine maps applied to the infimum of two subspaces, similar to lemmas that exist for various other subobject types. ```lean lemma map_inf_le (s₁ s₂ : AffineSubspace k P₁) : (s₁ ⊓ s₂).map f ≤ s₁.map f ⊓ s₂.map f := ``` ```lean lemma map_inf_eq (hf : Function.Injective f) (s₁ s₂ : AffineSubspace k P₁) : (s₁ ⊓ s₂).map f = s₁.map f ⊓ s₂.map f := by ```
1 parent 9e28bbc commit a23e4d4

File tree

1 file changed

+9
-0
lines changed
  • Mathlib/LinearAlgebra/AffineSpace/AffineSubspace

1 file changed

+9
-0
lines changed

Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Basic.lean

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -561,6 +561,15 @@ theorem map_span (s : Set P₁) : (affineSpan k s).map f = affineSpan k (f '' s)
561561
theorem map_mono {s₁ s₂ : AffineSubspace k P₁} (h : s₁ ≤ s₂) : s₁.map f ≤ s₂.map f :=
562562
Set.image_mono h
563563

564+
lemma map_inf_le (s₁ s₂ : AffineSubspace k P₁) : (s₁ ⊓ s₂).map f ≤ s₁.map f ⊓ s₂.map f :=
565+
le_inf (map_mono _ inf_le_left) (map_mono _ inf_le_right)
566+
567+
lemma map_inf_eq (hf : Function.Injective f) (s₁ s₂ : AffineSubspace k P₁) :
568+
(s₁ ⊓ s₂).map f = s₁.map f ⊓ s₂.map f := by
569+
ext p
570+
simp [mem_inf_iff]
571+
grind
572+
564573
lemma map_mk' (p : P₁) (direction : Submodule k V₁) :
565574
(mk' p direction).map f = mk' (f p) (direction.map f.linear) := by
566575
ext q

0 commit comments

Comments
 (0)