diff --git a/Mathlib/Algebra/Algebra/Subalgebra/Lattice.lean b/Mathlib/Algebra/Algebra/Subalgebra/Lattice.lean index 0e43c28af0e901..7d5edfc81f0a1c 100644 --- a/Mathlib/Algebra/Algebra/Subalgebra/Lattice.lean +++ b/Mathlib/Algebra/Algebra/Subalgebra/Lattice.lean @@ -754,7 +754,7 @@ theorem ext_of_adjoin_eq_top {s : Set A} (h : adjoin R s = ⊤) ⦃φ₁ φ₂ : (hs : s.EqOn φ₁ φ₂) : φ₁ = φ₂ := ext fun _x => adjoin_le_equalizer φ₁ φ₂ hs <| h.symm ▸ trivial -/-- Two algebra morphisms are equal on `Algebra.span s`iff they are equal on s -/ +/-- Two algebra morphisms are equal on `Algebra.span s` iff they are equal on `s`. -/ theorem eqOn_adjoin_iff {φ ψ : A →ₐ[R] B} {s : Set A} : Set.EqOn φ ψ (adjoin R s) ↔ Set.EqOn φ ψ s := by have (S : Set A) : S ≤ equalizer φ ψ ↔ Set.EqOn φ ψ S := Iff.rfl diff --git a/Mathlib/Algebra/Homology/Embedding/Connect.lean b/Mathlib/Algebra/Homology/Embedding/Connect.lean index dfb240beb4d0ff..7c32acb0ac0995 100644 --- a/Mathlib/Algebra/Homology/Embedding/Connect.lean +++ b/Mathlib/Algebra/Homology/Embedding/Connect.lean @@ -177,7 +177,7 @@ noncomputable def homologyIsoPos (n : ℕ) [NeZero n] (m : ℤ) (hm : m = n) (by simp; cutsat) (by simp; cutsat) (by simp) (by simp)).symm ≪≫ HomologicalComplex.homologyMapIso h.restrictionGEIso n -/-- Given `h : ConnectData K L` and `n : ℕ`non-zero, the homology +/-- Given `h : ConnectData K L` and `n : ℕ` non-zero, the homology of `h.cochainComplex` in degree `-(n + 1)` identifies to the homology of `K` in degree `n`. -/ noncomputable def homologyIsoNeg (n : ℕ) [NeZero n] (m : ℤ) (hm : m = -(n + 1 : ℕ)) [h.cochainComplex.HasHomology m] [K.HasHomology n] : diff --git a/Mathlib/Analysis/Calculus/ContDiff/Operations.lean b/Mathlib/Analysis/Calculus/ContDiff/Operations.lean index fb58ff5d4587ad..045ca85fc1eb7e 100644 --- a/Mathlib/Analysis/Calculus/ContDiff/Operations.lean +++ b/Mathlib/Analysis/Calculus/ContDiff/Operations.lean @@ -183,7 +183,7 @@ theorem ContDiffAt.add {f g : E → F} (hf : ContDiffAt 𝕜 n f x) (hg : ContDi ContDiffAt 𝕜 n (fun x => f x + g x) x := by rw [← contDiffWithinAt_univ] at *; exact hf.add hg -/-- The sum of two `C^n`functions is `C^n`. -/ +/-- The sum of two `C^n` functions is `C^n`. -/ @[fun_prop] theorem ContDiff.add {f g : E → F} (hf : ContDiff 𝕜 n f) (hg : ContDiff 𝕜 n g) : ContDiff 𝕜 n fun x => f x + g x := @@ -264,7 +264,7 @@ theorem ContDiffWithinAt.neg {s : Set E} {f : E → F} (hf : ContDiffWithinAt theorem ContDiffAt.neg {f : E → F} (hf : ContDiffAt 𝕜 n f x) : ContDiffAt 𝕜 n (fun x => -f x) x := by rw [← contDiffWithinAt_univ] at *; exact hf.neg -/-- The negative of a `C^n`function is `C^n`. -/ +/-- The negative of a `C^n` function is `C^n`. -/ @[fun_prop] theorem ContDiff.neg {f : E → F} (hf : ContDiff 𝕜 n f) : ContDiff 𝕜 n fun x => -f x := contDiff_neg.comp hf @@ -409,7 +409,7 @@ nonrec theorem ContDiffAt.mul {f g : E → 𝔸} (hf : ContDiffAt 𝕜 n f x) (h theorem ContDiffOn.mul {f g : E → 𝔸} (hf : ContDiffOn 𝕜 n f s) (hg : ContDiffOn 𝕜 n g s) : ContDiffOn 𝕜 n (fun x => f x * g x) s := fun x hx => (hf x hx).mul (hg x hx) -/-- The product of two `C^n`functions is `C^n`. -/ +/-- The product of two `C^n` functions is `C^n`. -/ @[fun_prop] theorem ContDiff.mul {f g : E → 𝔸} (hf : ContDiff 𝕜 n f) (hg : ContDiff 𝕜 n g) : ContDiff 𝕜 n fun x => f x * g x := diff --git a/Mathlib/Analysis/Normed/Module/FiniteDimension.lean b/Mathlib/Analysis/Normed/Module/FiniteDimension.lean index 700838fb33d910..26122c9b9c7da8 100644 --- a/Mathlib/Analysis/Normed/Module/FiniteDimension.lean +++ b/Mathlib/Analysis/Normed/Module/FiniteDimension.lean @@ -46,7 +46,7 @@ linear maps are continuous. Moreover, a finite-dimensional subspace is always co The fact that all norms are equivalent is not written explicitly, as it would mean having two norms on a single space, which is not the way type classes work. However, if one has a finite-dimensional vector space `E` with a norm, and a copy `E'` of this type with another norm, -then the identities from `E` to `E'` and from `E'`to `E` are continuous thanks to +then the identities from `E` to `E'` and from `E'` to `E` are continuous thanks to `LinearMap.continuous_of_finiteDimensional`. This gives the desired norm equivalence. -/ diff --git a/Mathlib/Analysis/RCLike/Inner.lean b/Mathlib/Analysis/RCLike/Inner.lean index 884407b3dd4ede..dca9a3f8d98164 100644 --- a/Mathlib/Analysis/RCLike/Inner.lean +++ b/Mathlib/Analysis/RCLike/Inner.lean @@ -18,7 +18,7 @@ from `RCLike.innerProductSpace`. * Build a non-instance `InnerProductSpace` from `wInner`. * `cWeight` is a poor name. Can we find better? It doesn't hugely matter for typing, since it's - hidden behind the `⟪f, g⟫ₙ_[𝕝] `notation, but it does show up in lemma names + hidden behind the `⟪f, g⟫ₙ_[𝕝]` notation, but it does show up in lemma names `⟪f, g⟫_[𝕝, cWeight]` is called `wInner_cWeight`. Maybe we should introduce some naming convention, similarly to `MeasureTheory.average`? -/ diff --git a/Mathlib/Analysis/SpecialFunctions/Exponential.lean b/Mathlib/Analysis/SpecialFunctions/Exponential.lean index 06b575eb7a19ec..8dd063ab52d010 100644 --- a/Mathlib/Analysis/SpecialFunctions/Exponential.lean +++ b/Mathlib/Analysis/SpecialFunctions/Exponential.lean @@ -91,7 +91,7 @@ variable {𝕂 𝔸 : Type*} [NontriviallyNormedField 𝕂] [NormedCommRing 𝔸 /-- The exponential map in a commutative Banach algebra `𝔸` over a normed field `𝕂` of characteristic zero has Fréchet derivative `NormedSpace.exp 𝕂 x • 1 : 𝔸 →L[𝕂] 𝔸` -at any point `x`in the disk of convergence. -/ +at any point `x` in the disk of convergence. -/ theorem hasFDerivAt_exp_of_mem_ball [CharZero 𝕂] {x : 𝔸} (hx : x ∈ EMetric.ball (0 : 𝔸) (expSeries 𝕂 𝔸).radius) : HasFDerivAt (exp 𝕂) (exp 𝕂 x • (1 : 𝔸 →L[𝕂] 𝔸)) x := by diff --git a/Mathlib/CategoryTheory/Functor/KanExtension/Preserves.lean b/Mathlib/CategoryTheory/Functor/KanExtension/Preserves.lean index 52a62cab745584..285d091c4da118 100644 --- a/Mathlib/CategoryTheory/Functor/KanExtension/Preserves.lean +++ b/Mathlib/CategoryTheory/Functor/KanExtension/Preserves.lean @@ -106,7 +106,7 @@ def LeftExtension.IsPointwiseLeftKanExtension.postcompose LeftExtension.postcompose₂ L F G |>.obj E |>.IsPointwiseLeftKanExtension := fun c ↦ (hE c).postcompose G -/-- The cocone at a point of the whiskering right by `G`of an extension is isomorphic to the +/-- The cocone at a point of the whiskering right by `G` of an extension is isomorphic to the action of `G` on the cocone at that point for the original extension. -/ @[simps!] def LeftExtension.coconeAtWhiskerRightIso (E : LeftExtension L F) (c : C) : @@ -358,7 +358,7 @@ def RightExtension.IsPointwiseRightKanExtension.postcompose RightExtension.postcompose₂ L F G |>.obj E |>.IsPointwiseRightKanExtension := fun c ↦ (hE c).postcompose G -/-- The cone at a point of the whiskering right by `G`of an extension is isomorphic to the +/-- The cone at a point of the whiskering right by `G` of an extension is isomorphic to the action of `G` on the cone at that point for the original extension. -/ @[simps!] def RightExtension.coneAtWhiskerRightIso (E : RightExtension L F) (c : C) : diff --git a/Mathlib/CategoryTheory/InducedCategory.lean b/Mathlib/CategoryTheory/InducedCategory.lean index 065b1664f5b1ed..8d074a3b1925bb 100644 --- a/Mathlib/CategoryTheory/InducedCategory.lean +++ b/Mathlib/CategoryTheory/InducedCategory.lean @@ -10,7 +10,7 @@ public import Mathlib.CategoryTheory.Functor.FullyFaithful /-! # Induced categories and full subcategories -Given a category `D` and a function `F : C → D `from a type `C` to the +Given a category `D` and a function `F : C → D` from a type `C` to the objects of `D`, there is an essentially unique way to give `C` a category structure such that `F` becomes a fully faithful functor, namely by taking $$ Hom_C(X, Y) = Hom_D(FX, FY) $$. We call this the diff --git a/Mathlib/CategoryTheory/Sites/Sheaf.lean b/Mathlib/CategoryTheory/Sites/Sheaf.lean index 8a0632ee8c11e6..fdff69482ce181 100644 --- a/Mathlib/CategoryTheory/Sites/Sheaf.lean +++ b/Mathlib/CategoryTheory/Sites/Sheaf.lean @@ -152,7 +152,7 @@ theorem isLimit_iff_isSheafFor : /-- Given sieve `S` and presheaf `P : Cᵒᵖ ⥤ A`, their natural associated cone admits at most one morphism from every cone in the same category (i.e. over the same diagram), - iff `Hom (E, P -)`is separated for the sieve `S` and all `E : A`. -/ + iff `Hom (E, P -)` is separated for the sieve `S` and all `E : A`. -/ theorem subsingleton_iff_isSeparatedFor : (∀ c, Subsingleton (c ⟶ P.mapCone S.arrows.cocone.op)) ↔ ∀ E : Aᵒᵖ, IsSeparatedFor (P ⋙ coyoneda.obj E) S.arrows := by diff --git a/Mathlib/Combinatorics/SetFamily/Compression/Down.lean b/Mathlib/Combinatorics/SetFamily/Compression/Down.lean index faeb27814164d9..fd689177987267 100644 --- a/Mathlib/Combinatorics/SetFamily/Compression/Down.lean +++ b/Mathlib/Combinatorics/SetFamily/Compression/Down.lean @@ -186,7 +186,7 @@ it suffices to prove it for * the finset family which only contains the empty finset. * `{s ∪ {a} | s ∈ 𝒜}` assuming the property for `𝒜` a family of finsets not containing `a`. * `ℬ ∪ 𝒞` assuming the property for `ℬ` and `𝒞`, where `a` is an element of the ground type and - `ℬ`is a family of finsets not containing `a` and `𝒞` a family of finsets containing `a`. + `ℬ` is a family of finsets not containing `a` and `𝒞` a family of finsets containing `a`. Note that instead of giving `ℬ` and `𝒞`, the `subfamily` case gives you `𝒜 = ℬ ∪ 𝒞`, so that `ℬ = {s ∈ 𝒜 | a ∉ s}` and `𝒞 = {s ∈ 𝒜 | a ∈ s}`. diff --git a/Mathlib/Data/NNRat/Defs.lean b/Mathlib/Data/NNRat/Defs.lean index dcd5c7bbcc9af3..5a9895b577eae0 100644 --- a/Mathlib/Data/NNRat/Defs.lean +++ b/Mathlib/Data/NNRat/Defs.lean @@ -45,7 +45,7 @@ library_note2 «specialised high priority simp lemma» /-- It sometimes happens that a `@[simp]` lemma declared early in the library can be proved by `simp` using later, more general simp lemmas. In that case, the following reasons might be arguments for the early lemma to be tagged `@[simp high]` (rather than `@[simp, nolint simpNF]` or -un``@[simp]``ed): +un-`@[simp]`ed): 1. There is a significant portion of the library which needs the early lemma to be available via `simp` and which doesn't have access to the more general lemmas. 2. The more general lemmas have more complicated typeclass assumptions, causing rewrites with them diff --git a/Mathlib/Data/PFun.lean b/Mathlib/Data/PFun.lean index 72e5fcf912b173..9959e8916b6fb4 100644 --- a/Mathlib/Data/PFun.lean +++ b/Mathlib/Data/PFun.lean @@ -42,8 +42,8 @@ Partial functions can be considered as relations, so we specialize some `Rel` de * `PFun.ran`: Range of a partial function. * `PFun.preimage`: Preimage of a set under a partial function. * `PFun.core`: Core of a set under a partial function. -* `PFun.graph`: Graph of a partial function `a →. β`as a `Set (α × β)`. -* `PFun.graph'`: Graph of a partial function `a →. β`as a `Rel α β`. +* `PFun.graph`: Graph of a partial function `a →. β` as a `Set (α × β)`. +* `PFun.graph'`: Graph of a partial function `a →. β` as a `Rel α β`. ### `PFun α` as a monad diff --git a/Mathlib/Data/Set/Lattice.lean b/Mathlib/Data/Set/Lattice.lean index 1f9b1d595066a8..113b512057feaf 100644 --- a/Mathlib/Data/Set/Lattice.lean +++ b/Mathlib/Data/Set/Lattice.lean @@ -181,12 +181,12 @@ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j -/-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` +/-- This rather trivial consequence of `subset_iUnion` is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h -/-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` +/-- This rather trivial consequence of `iInter_subset` is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := diff --git a/Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean b/Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean index ce4ed20820a9d5..a16c989ddd3522 100644 --- a/Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean +++ b/Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean @@ -663,7 +663,7 @@ theorem eq_of_root {x y : L} (hx : IsAlgebraic K x) (h_ev : Polynomial.aeval y (minpoly K x) = 0) : minpoly K y = minpoly K x := ((eq_iff_aeval_minpoly_eq_zero hx.isIntegral).mpr h_ev).symm -/-- The canonical `algEquiv` between `K⟮x⟯`and `K⟮y⟯`, sending `x` to `y`, where `x` and `y` have +/-- The canonical `algEquiv` between `K⟮x⟯` and `K⟮y⟯`, sending `x` to `y`, where `x` and `y` have the same minimal polynomial over `K`. -/ noncomputable def algEquiv {x y : L} (hx : IsAlgebraic K x) (h_mp : minpoly K x = minpoly K y) : K⟮x⟯ ≃ₐ[K] K⟮y⟯ := by diff --git a/Mathlib/Geometry/Manifold/ContMDiff/Defs.lean b/Mathlib/Geometry/Manifold/ContMDiff/Defs.lean index 905f41e43ad95a..df314818d27b03 100644 --- a/Mathlib/Geometry/Manifold/ContMDiff/Defs.lean +++ b/Mathlib/Geometry/Manifold/ContMDiff/Defs.lean @@ -622,7 +622,7 @@ theorem contMDiffWithinAt_iff_le_ne_infty : | coe n => exact contMDiffWithinAt_iff_nat.2 (fun m hm ↦ h _ (mod_cast hm) (by simp)) -/-- A function is `C^n`at a point iff it is `C^m`at this point, for +/-- A function is `C^n` at a point iff it is `C^m` at this point, for any `m ≤ n` which is different from `∞`. This result is useful because, when `m ≠ ∞`, being `C^m` extends locally to a neighborhood, giving flexibility for local proofs. -/ theorem contMDiffAt_iff_le_ne_infty : diff --git a/Mathlib/GroupTheory/GroupAction/Hom.lean b/Mathlib/GroupTheory/GroupAction/Hom.lean index 5e67c575023603..0d30e9a2e8de11 100644 --- a/Mathlib/GroupTheory/GroupAction/Hom.lean +++ b/Mathlib/GroupTheory/GroupAction/Hom.lean @@ -801,7 +801,7 @@ class MulSemiringActionSemiHomClass (F : Type*) extends DistribMulActionSemiHomClass F φ R S, RingHomClass F R S /-- `MulSemiringActionHomClass F M R S` states that `F` is a type of morphisms preserving -the ring structure and equivariant with respect to a `DistribMulAction`of `M` on `R` and `S` . +the ring structure and equivariant with respect to a `DistribMulAction` of `M` on `R` and `S`. -/ abbrev MulSemiringActionHomClass (F : Type*) diff --git a/Mathlib/GroupTheory/GroupAction/MultiplePrimitivity.lean b/Mathlib/GroupTheory/GroupAction/MultiplePrimitivity.lean index ccb96f08e1edfa..50fcc5571410f1 100644 --- a/Mathlib/GroupTheory/GroupAction/MultiplePrimitivity.lean +++ b/Mathlib/GroupTheory/GroupAction/MultiplePrimitivity.lean @@ -158,7 +158,7 @@ theorem isMultiplyPreprimitive_ofStabilizer aesop exact IsPreprimitive.of_surjective ofFixingSubgroup_insert_map_bijective.surjective -/-- A pretransitive action is `n.succ-`preprimitive iff +/-- A pretransitive action is `n.succ`-preprimitive iff the action of stabilizers is `n`-preprimitive. -/ @[to_additive] theorem isMultiplyPreprimitive_succ_iff_ofStabilizer diff --git a/Mathlib/GroupTheory/GroupAction/Pointwise.lean b/Mathlib/GroupTheory/GroupAction/Pointwise.lean index 94f536d5a6c7bb..08930ab36886a5 100644 --- a/Mathlib/GroupTheory/GroupAction/Pointwise.lean +++ b/Mathlib/GroupTheory/GroupAction/Pointwise.lean @@ -22,7 +22,7 @@ public import Mathlib.Algebra.Group.Units.Hom It requires that `c` acts surjectively and `σ c` acts injectively and is provided with specific versions: - `preimage_smul_setₛₗ_of_isUnit_isUnit` when `c` and `σ c` are units - - `IsUnit.preimage_smul_setₛₗ` when `σ` belongs to a `MonoidHomClass`and `c` is a unit + - `IsUnit.preimage_smul_setₛₗ` when `σ` belongs to a `MonoidHomClass` and `c` is a unit - `MonoidHom.preimage_smul_setₛₗ` when `σ` is a `MonoidHom` and `c` is a unit - `Group.preimage_smul_setₛₗ` : when the types of `c` and `σ c` are groups. diff --git a/Mathlib/GroupTheory/GroupAction/Quotient.lean b/Mathlib/GroupTheory/GroupAction/Quotient.lean index d52a0f72595493..35bc8db580ab34 100644 --- a/Mathlib/GroupTheory/GroupAction/Quotient.lean +++ b/Mathlib/GroupTheory/GroupAction/Quotient.lean @@ -232,7 +232,7 @@ noncomputable def selfEquivSigmaOrbitsQuotientStabilizer : β ≃ Σ ω : Ω, α @[to_additive AddAction.sigmaFixedByEquivOrbitsProdAddGroup /-- **Burnside's lemma** : a (noncomputable) bijection between the disjoint union of all `{x ∈ X | g • x = x}` for `g ∈ G` and the product `G × X/G`, where `G` is an additive group - acting on `X` and `X/G`denotes the quotient of `X` by the relation `orbitRel G X`. -/] + acting on `X` and `X/G` denotes the quotient of `X` by the relation `orbitRel G X`. -/] noncomputable def sigmaFixedByEquivOrbitsProdGroup : (Σ a : α, fixedBy β a) ≃ Ω × α := calc (Σ a : α, fixedBy β a) ≃ { ab : α × β // ab.1 • ab.2 = ab.2 } := diff --git a/Mathlib/GroupTheory/Perm/Centralizer.lean b/Mathlib/GroupTheory/Perm/Centralizer.lean index b8badee243bca8..ff8ac2b5381ff2 100644 --- a/Mathlib/GroupTheory/Perm/Centralizer.lean +++ b/Mathlib/GroupTheory/Perm/Centralizer.lean @@ -85,7 +85,7 @@ injectivity `Equiv.Perm.OnCycleFactors.kerParam_injective`, its range * `Equiv.Perm.nat_card_centralizer g` computes the cardinality of the centralizer of `g`. -* `Equiv.Perm.card_isConj_mul_eq g`computes the cardinality +* `Equiv.Perm.card_isConj_mul_eq g` computes the cardinality of the conjugacy class of `g`. * We now can compute the cardinality of the set of permutations with given cycle type. diff --git a/Mathlib/LinearAlgebra/PerfectPairing/Basic.lean b/Mathlib/LinearAlgebra/PerfectPairing/Basic.lean index 75111352e283fc..7e31fe8752f413 100644 --- a/Mathlib/LinearAlgebra/PerfectPairing/Basic.lean +++ b/Mathlib/LinearAlgebra/PerfectPairing/Basic.lean @@ -41,14 +41,14 @@ class IsPerfPair (p : M →ₗ[R] N →ₗ[R] R) where bijective_left (p) : Bijective p bijective_right (p) : Bijective p.flip -/-- Given a perfect pairing between `M`and `N`, we may interchange the roles of `M` and `N`. -/ +/-- Given a perfect pairing between `M` and `N`, we may interchange the roles of `M` and `N`. -/ protected lemma IsPerfPair.flip (hp : p.IsPerfPair) : p.flip.IsPerfPair where bijective_left := IsPerfPair.bijective_right p bijective_right := IsPerfPair.bijective_left p variable [p.IsPerfPair] -/-- Given a perfect pairing between `M`and `N`, we may interchange the roles of `M` and `N`. -/ +/-- Given a perfect pairing between `M` and `N`, we may interchange the roles of `M` and `N`. -/ instance flip.instIsPerfPair : p.flip.IsPerfPair := .flip ‹_› variable (p) diff --git a/Mathlib/LinearAlgebra/RootSystem/Finite/G2.lean b/Mathlib/LinearAlgebra/RootSystem/Finite/G2.lean index 7ddb0876cbb075..34f8a4a3192537 100644 --- a/Mathlib/LinearAlgebra/RootSystem/Finite/G2.lean +++ b/Mathlib/LinearAlgebra/RootSystem/Finite/G2.lean @@ -35,7 +35,7 @@ stronger assumptions on the coefficients than here. * `RootPairing.EmbeddedG2.threeShortAddTwoLong`: the long root `3α + 2β` * `RootPairing.EmbeddedG2.span_eq_top`: a crystallographic reduced irreducible root pairing containing two roots with pairing `-3` is spanned by this pair (thus two-dimensional). -* `RootPairing.EmbeddedG2.card_index_eq_twelve`: the `𝔤₂`root pairing has twelve roots. +* `RootPairing.EmbeddedG2.card_index_eq_twelve`: the `𝔤₂` root pairing has twelve roots. ## TODO Once sufficient API for `RootPairing.Base` has been developed: diff --git a/Mathlib/Logic/Relation.lean b/Mathlib/Logic/Relation.lean index 6499dd23a8421b..405a1f0b605ebb 100644 --- a/Mathlib/Logic/Relation.lean +++ b/Mathlib/Logic/Relation.lean @@ -36,8 +36,8 @@ the bundled version, see `Rel`. * `Relation.EqvGen`: Equivalence closure. `EqvGen r` relates everything `ReflTransGen r` relates, plus for all related pairs it relates them in the opposite order. * `Relation.Comp`: Relation composition. We provide notation `∘r`. For `r : α → β → Prop` and - `s : β → γ → Prop`, `r ∘r s`relates `a : α` and `c : γ` iff there exists `b : β` that's related to - both. + `s : β → γ → Prop`, `r ∘r s` relates `a : α` and `c : γ` iff there exists `b : β` that's related + to both. * `Relation.Map`: Image of a relation under a pair of maps. For `r : α → β → Prop`, `f : α → γ`, `g : β → δ`, `Map r f g` is the relation `γ → δ → Prop` relating `f a` and `g b` for all `a`, `b` related by `r`. diff --git a/Mathlib/MeasureTheory/Measure/FiniteMeasureExt.lean b/Mathlib/MeasureTheory/Measure/FiniteMeasureExt.lean index b50ecb49685da4..96c648d7617d5d 100644 --- a/Mathlib/MeasureTheory/Measure/FiniteMeasureExt.lean +++ b/Mathlib/MeasureTheory/Measure/FiniteMeasureExt.lean @@ -14,7 +14,7 @@ public import Mathlib.MeasureTheory.Measure.HasOuterApproxClosed The main Result is `ext_of_forall_mem_subalgebra_integral_eq_of_pseudoEMetric_complete_countable`: Let `A` be a StarSubalgebra of `C(E, 𝕜)` that separates points and whose elements are bounded. If -the integrals of all elements of `A` with respect to two finite measures `P, P'`coincide, then the +the integrals of all elements of `A` with respect to two finite measures `P, P'` coincide, then the measures coincide. In other words: If a Subalgebra separates points, it separates finite measures. -/ diff --git a/Mathlib/NumberTheory/LegendreSymbol/ZModChar.lean b/Mathlib/NumberTheory/LegendreSymbol/ZModChar.lean index d402c0b4316961..fd95230cba75f5 100644 --- a/Mathlib/NumberTheory/LegendreSymbol/ZModChar.lean +++ b/Mathlib/NumberTheory/LegendreSymbol/ZModChar.lean @@ -27,7 +27,7 @@ quadratic character, zmod /-! ### Quadratic characters mod 4 and 8 -We define the primitive quadratic characters `χ₄`on `ZMod 4` +We define the primitive quadratic characters `χ₄` on `ZMod 4` and `χ₈`, `χ₈'` on `ZMod 8`. -/ diff --git a/Mathlib/RepresentationTheory/FiniteIndex.lean b/Mathlib/RepresentationTheory/FiniteIndex.lean index ea689a2dd72eff..c44047dcd2288b 100644 --- a/Mathlib/RepresentationTheory/FiniteIndex.lean +++ b/Mathlib/RepresentationTheory/FiniteIndex.lean @@ -14,7 +14,7 @@ public import Mathlib.RepresentationTheory.Induced Given a commutative ring `k`, a finite index subgroup `S ≤ G`, and a `k`-linear `S`-representation `A`, this file defines an isomorphism $Ind_S^G(A) ≅ Coind_S^G(A)$. Given `g : G` and `a : A`, the -forward map sends `⟦g ⊗ₜ[k] a⟧` to the function `G → A`supported at `sg` by `ρ(s)(a)` for `s : S` +forward map sends `⟦g ⊗ₜ[k] a⟧` to the function `G → A` supported at `sg` by `ρ(s)(a)` for `s : S` and which is 0 elsewhere. Meanwhile, the inverse sends `f : G → A` to `∑ᵢ ⟦gᵢ ⊗ₜ[k] f(gᵢ)⟧` for `1 ≤ i ≤ n`, where `g₁, ..., gₙ` is a set of right coset representatives of `S`. diff --git a/Mathlib/RingTheory/Conductor.lean b/Mathlib/RingTheory/Conductor.lean index 44946af9f19b71..effa4800387022 100644 --- a/Mathlib/RingTheory/Conductor.lean +++ b/Mathlib/RingTheory/Conductor.lean @@ -12,7 +12,7 @@ public import Mathlib.RingTheory.PowerBasis # The conductor ideal This file defines the conductor ideal of an element `x` of `R`-algebra `S`. This is the ideal of `S` consisting of all elements `a` such that for all `b` in `S`, the product `a * b` lies in the -`R`subalgebra of `S` generated by `x`. +`R`-subalgebra of `S` generated by `x`. -/ diff --git a/Mathlib/RingTheory/DedekindDomain/AdicValuation.lean b/Mathlib/RingTheory/DedekindDomain/AdicValuation.lean index fe2d713499baf0..8128b4bfa63e7c 100644 --- a/Mathlib/RingTheory/DedekindDomain/AdicValuation.lean +++ b/Mathlib/RingTheory/DedekindDomain/AdicValuation.lean @@ -28,8 +28,8 @@ We define the completion of `K` with respect to the `v`-adic valuation, denoted to its `v`-adic valuation. - `IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers v` is the ring of integers of `v.adicCompletion`. -- `IsDedekindDomain.HeightOneSpectrum.adicAbv v`is the `v`-adic absolute value on `K` defined as `b` - raised to negative `v`-adic valuation, for some `b` in `ℝ≥0`. +- `IsDedekindDomain.HeightOneSpectrum.adicAbv v` is the `v`-adic absolute value on `K` defined as + `b` raised to negative `v`-adic valuation, for some `b` in `ℝ≥0`. ## Main results - `IsDedekindDomain.HeightOneSpectrum.intValuation_le_one` : The `v`-adic valuation on `R` is diff --git a/Mathlib/RingTheory/Ideal/Quotient/Operations.lean b/Mathlib/RingTheory/Ideal/Quotient/Operations.lean index 56e8f8639114f7..bc3e34b9546f41 100644 --- a/Mathlib/RingTheory/Ideal/Quotient/Operations.lean +++ b/Mathlib/RingTheory/Ideal/Quotient/Operations.lean @@ -813,7 +813,7 @@ theorem ker_quotQuotMk : RingHom.ker (quotQuotMk I J) = I ⊔ J := by comap_map_of_surjective (Ideal.Quotient.mk I) Ideal.Quotient.mk_surjective, ← RingHom.ker, mk_ker, sup_comm] -/-- The ring homomorphism `R/(I ⊔ J) → (R/I)/J' `induced by `quotQuotMk` -/ +/-- The ring homomorphism `R/(I ⊔ J) → (R/I)/J'` induced by `quotQuotMk` -/ def liftSupQuotQuotMk (I J : Ideal R) : R ⧸ I ⊔ J →+* (R ⧸ I) ⧸ J.map (Ideal.Quotient.mk I) := Ideal.Quotient.lift (I ⊔ J) (quotQuotMk I J) (ker_quotQuotMk I J).symm.le @@ -954,7 +954,7 @@ theorem quotQuotMkₐ_toRingHom : theorem coe_quotQuotMkₐ : ⇑(quotQuotMkₐ R I J) = quotQuotMk I J := rfl -/-- The injective algebra homomorphism `A / (I ⊔ J) → (A / I) / J'`induced by `quot_quot_mk`, +/-- The injective algebra homomorphism `A / (I ⊔ J) → (A / I) / J'` induced by `quotQuotMk`, where `J'` is the projection `J` in `A / I`. -/ def liftSupQuotQuotMkₐ (I J : Ideal A) : A ⧸ I ⊔ J →ₐ[R] (A ⧸ I) ⧸ J.map (Quotient.mkₐ R I) := AlgHom.mk (liftSupQuotQuotMk I J) fun _ => rfl diff --git a/Mathlib/RingTheory/Localization/Pi.lean b/Mathlib/RingTheory/Localization/Pi.lean index 356dacc59775e1..4b0af0032b116d 100644 --- a/Mathlib/RingTheory/Localization/Pi.lean +++ b/Mathlib/RingTheory/Localization/Pi.lean @@ -20,7 +20,7 @@ public import Mathlib.RingTheory.KrullDimension.Zero ## Main Result * `bijective_lift_piRingHom_algebraMap_comp_piEvalRingHom`: the canonical map from a - localization of a finite product of rings `R i `at a monoid `M` to the direct product of + localization of a finite product of rings `R i` at a monoid `M` to the direct product of localizations `R i` at the projection of `M` onto each corresponding factor is bijective. ## Implementation notes diff --git a/Mathlib/Topology/Algebra/Module/Equiv.lean b/Mathlib/Topology/Algebra/Module/Equiv.lean index 44c77e51acffe8..ded26d481b61d1 100644 --- a/Mathlib/Topology/Algebra/Module/Equiv.lean +++ b/Mathlib/Topology/Algebra/Module/Equiv.lean @@ -788,7 +788,7 @@ section Aut /-! ### Automorphisms as continuous linear equivalences and as units of the ring of endomorphisms -The next theorems cover the identification between `M ≃L[R] M`and the group of units of the ring +The next theorems cover the identification between `M ≃L[R] M` and the group of units of the ring `M →L[R] M`. -/ diff --git a/Mathlib/Topology/Algebra/Module/PerfectPairing.lean b/Mathlib/Topology/Algebra/Module/PerfectPairing.lean index 0f94315132e208..81d5811fc97513 100644 --- a/Mathlib/Topology/Algebra/Module/PerfectPairing.lean +++ b/Mathlib/Topology/Algebra/Module/PerfectPairing.lean @@ -54,7 +54,7 @@ variable [p.IsContPerfPair] alias continuous_uncurry_of_isContPerfPair := IsContPerfPair.continuous_uncurry -/-- Given a perfect pairing between `M`and `N`, we may interchange the roles of `M` and `N`. -/ +/-- Given a perfect pairing between `M` and `N`, we may interchange the roles of `M` and `N`. -/ instance flip.instIsContPerfPair : p.flip.IsContPerfPair where continuous_uncurry := p.continuous_uncurry_of_isContPerfPair.comp continuous_swap bijective_left := IsContPerfPair.bijective_right p diff --git a/Mathlib/Topology/Constructions.lean b/Mathlib/Topology/Constructions.lean index a6021efb8bdd67..699098a04c362f 100644 --- a/Mathlib/Topology/Constructions.lean +++ b/Mathlib/Topology/Constructions.lean @@ -565,7 +565,7 @@ protected lemma Topology.IsClosedEmbedding.inclusion (hst : s ⊆ t) (hs : IsClo isClosed_range := by rwa [range_inclusion] /-- Let `s, t ⊆ X` be two subsets of a topological space `X`. If `t ⊆ s` and the topology induced -by `X`on `s` is discrete, then also the topology induces on `t` is discrete. -/ +by `X` on `s` is discrete, then also the topology induces on `t` is discrete. -/ theorem DiscreteTopology.of_subset {X : Type*} [TopologicalSpace X] {s t : Set X} (_ : DiscreteTopology s) (ts : t ⊆ s) : DiscreteTopology t := (IsEmbedding.inclusion ts).discreteTopology diff --git a/Mathlib/Topology/ContinuousMap/Lattice.lean b/Mathlib/Topology/ContinuousMap/Lattice.lean index a173655c219cf5..714651a91c624d 100644 --- a/Mathlib/Topology/ContinuousMap/Lattice.lean +++ b/Mathlib/Topology/ContinuousMap/Lattice.lean @@ -29,7 +29,7 @@ variable {β : Type*} [TopologicalSpace β] section Lattice -/-! `C(α, β)`is a lattice ordered group -/ +/-! `C(α, β)` is a lattice ordered group. -/ @[to_additive] instance [PartialOrder β] [CommMonoid β] [IsOrderedMonoid β] [ContinuousMul β] : diff --git a/Mathlib/Topology/NhdsSet.lean b/Mathlib/Topology/NhdsSet.lean index 4ccc148feb23de..48b5ac80326950 100644 --- a/Mathlib/Topology/NhdsSet.lean +++ b/Mathlib/Topology/NhdsSet.lean @@ -22,7 +22,7 @@ There are a couple different notions equivalent to `s ∈ 𝓝ˢ t`: Furthermore, we have the following results: * `monotone_nhdsSet`: `𝓝ˢ` is monotone -* In T₁-spaces, `𝓝ˢ`is strictly monotone and hence injective: +* In T₁-spaces, `𝓝ˢ` is strictly monotone and hence injective: `strict_mono_nhdsSet`/`injective_nhdsSet`. These results are in `Mathlib/Topology/Separation/Basic.lean`. -/