-
Notifications
You must be signed in to change notification settings - Fork 0
themis docs features features_enterprise_ingestion
Version: 1.0
Datum: 17. November 2025
Zweck: API-Spezifikation für externe Enterprise Ingestion Pipeline
Die Enterprise Ingestion DLL übernimmt alle Ingestion-bezogenen Features:
- Text Extraction (PDF, DOCX, Markdown, Code)
- Chunking Pipeline (Fixed-size, Semantic, Sliding Window)
- Binary Blob Storage (>5MB → Filesystem)
- Multi-Modal Embeddings (Text + Image + Audio)
- Embedding Generation (via OpenAI/Cohere/Local Models)
ThemisDB Core stellt Storage, Indexierung und Retrieval bereit.
┌─────────────────────────────────────────────────────────┐
│ Enterprise Ingestion DLL (extern) │
│ • Text Extraction (PDF/DOCX/MD) │
│ • Chunking (512 tokens, overlap 50) │
│ • Embedding Generation (OpenAI/Cohere) │
│ • Blob Storage (>5MB → Filesystem) │
└────────────────────┬────────────────────────────────────┘
│ JSON Import API
▼
┌─────────────────────────────────────────────────────────┐
│ ThemisDB Core (Open Source) │
│ • ContentManager (Storage) │
│ • VectorIndexManager (HNSW) │
│ • GraphIndexManager (Chunk Relations) │
│ • SecondaryIndexManager (Tags, Metadata) │
└─────────────────────────────────────────────────────────┘
ThemisDB bietet:
POST /content/import
Content-Type: application/json
{
"content": {
"id": "uuid-1234",
"mime_type": "application/pdf",
"category": "TEXT",
"original_filename": "report.pdf",
"size_bytes": 1048576,
"created_at": 1730120400,
"hash_sha256": "abc123...",
"tags": ["research", "2025"],
"user_metadata": {"project": "Alpha"}
},
"chunks": [
{
"id": "chunk-uuid-1",
"content_id": "uuid-1234",
"seq_num": 0,
"text": "Chapter 1: Introduction...",
"start_char": 0,
"end_char": 512,
"embedding": [0.1, 0.2, 0.3, ...],
"metadata": {"page": 1, "section": "intro"}
},
{
"id": "chunk-uuid-2",
"content_id": "uuid-1234",
"seq_num": 1,
"text": "Machine learning is...",
"start_char": 462,
"end_char": 974,
"embedding": [0.4, 0.5, 0.6, ...],
"metadata": {"page": 2, "section": "intro"}
}
],
"edges": [
{
"id": "edge-1",
"_from": "chunk-uuid-1",
"_to": "chunk-uuid-2",
"_type": "NEXT"
}
]
}Response:
{
"ok": true,
"message": "Content imported successfully",
"content_id": "uuid-1234",
"chunks_stored": 15,
"edges_created": 14
}Enterprise DLL übernimmt:
// DLL Export
extern "C" __declspec(dllexport)
ExtractionResult extractText(const char* blob, size_t blob_size, const char* mime_type);
struct ExtractionResult {
char* text; // Extracted plain text
int page_count;
char* metadata_json; // {"author": "...", "title": "..."}
};Supported MIME Types:
-
application/pdf→ PDFium/Poppler -
application/vnd.openxmlformats-officedocument.wordprocessingml.document→ libdocx -
text/markdown→ Raw text -
text/plain→ Raw text -
application/json→ Parsed JSON
// DLL Export
extern "C" __declspec(dllexport)
ChunkingResult chunkText(const char* text, const ChunkingConfig* config);
struct ChunkingConfig {
int chunk_size; // Default: 512 tokens
int overlap; // Default: 50 tokens
bool respect_sentences; // Default: true
const char* tokenizer; // "whitespace" | "tiktoken" | "sentencepiece"
};
struct ChunkingResult {
Chunk* chunks;
int chunk_count;
};
struct Chunk {
char* text;
int start_char;
int end_char;
int seq_num;
};Chunking Strategies:
- Fixed Size: 512 tokens per chunk, overlap 50
- Semantic: Sentence/Paragraph boundaries (spaCy/NLTK)
- Sliding Window: Continuous overlap
// DLL Export
extern "C" __declspec(dllexport)
EmbeddingResult generateEmbedding(const char* text, const char* model_name);
struct EmbeddingResult {
float* embedding;
int dimension; // e.g., 1536 for text-embedding-3-small
const char* model; // "openai/text-embedding-3-small"
};Supported Models:
- OpenAI:
text-embedding-3-small(1536 dim),text-embedding-3-large(3072 dim) - Cohere:
embed-english-v3.0(1024 dim) - Local:
sentence-transformers/all-MiniLM-L6-v2(384 dim)
// DLL Export
extern "C" __declspec(dllexport)
BlobStorageResult storeLargeBlob(const char* blob, size_t blob_size, const char* hash);
struct BlobStorageResult {
char* storage_path; // e.g., "data/blobs/abc123.bin"
bool compressed; // ZSTD compression applied
size_t compressed_size;
};Storage Strategy:
-
<5MB→ RocksDB (inline) -
>=5MB→ Filesystem (data/blobs/<sha256>.bin) - Compression: ZSTD Level 19 for text, skip for images/videos
DLL Pseudocode:
void processPDF(const char* pdf_blob, size_t blob_size) {
// 1. Extract text
ExtractionResult extracted = extractText(pdf_blob, blob_size, "application/pdf");
// 2. Chunk text
ChunkingConfig cfg = {.chunk_size = 512, .overlap = 50, .respect_sentences = true};
ChunkingResult chunks = chunkText(extracted.text, &cfg);
// 3. Generate embeddings
std::vector<EmbeddingResult> embeddings;
for (int i = 0; i < chunks.chunk_count; i++) {
embeddings.push_back(generateEmbedding(chunks.chunks[i].text, "openai/text-embedding-3-small"));
}
// 4. Build JSON for ThemisDB
json import_spec = buildImportSpec(extracted, chunks, embeddings);
// 5. Send to ThemisDB
http_post("/content/import", import_spec.dump());
}✅ Storage:
- ContentMeta/ChunkMeta in RocksDB
- Blob storage (optional filesystem delegation)
✅ Indexing:
- Vector Index (HNSW für embeddings)
- Graph Index (Chunk relations: NEXT, PARENT)
- Secondary Index (tags, metadata, category)
✅ Retrieval:
-
/content/search(Hybrid Search) -
/content/:id(Get metadata) -
/content/:id/blob(Download original) -
/fs/:path(Filesystem interface)
✅ Ingestion:
- Text extraction (PDF/DOCX/MD)
- Chunking pipeline
- Embedding generation
- Large blob storage strategy
ThemisDB Config (config.json):
{
"content": {
"enable_enterprise_ingestion": true,
"dll_path": "C:/path/to/themis_ingestion_enterprise.dll",
"blob_storage_threshold_mb": 5,
"default_chunk_size": 512,
"default_overlap": 50,
"embedding_model": "openai/text-embedding-3-small",
"openai_api_key": "${OPENAI_API_KEY}"
}
}Environment Variables:
OPENAI_API_KEY=sk-...
COHERE_API_KEY=co-...
THEMIS_ENTERPRISE_DLL=/opt/themis/ingestion.soIngestion Throughput:
- PDF (10 pages): ~2-5 seconds (extraction + chunking + embedding)
- DOCX (50 pages): ~5-10 seconds
- Markdown (100KB): ~500ms
Embedding Generation:
- OpenAI API: ~100ms per chunk (rate limit: 3000 RPM)
- Local Model: ~50ms per chunk (GPU), ~200ms (CPU)
Storage:
- RocksDB write: ~1-2ms per chunk
- HNSW insert: ~5-10ms per vector (M=16, efConstruction=200)
DLL Error Codes:
enum IngestionErrorCode {
SUCCESS = 0,
EXTRACTION_FAILED = 1001,
CHUNKING_FAILED = 1002,
EMBEDDING_FAILED = 1003,
STORAGE_FAILED = 1004,
INVALID_FORMAT = 1005
};ThemisDB Response:
{
"ok": false,
"error": "Extraction failed: Unsupported PDF version",
"code": 1001
}DLL Unit Tests:
- PDF extraction (multi-page, Unicode, images)
- Chunking (overlap, sentence boundaries)
- Embedding generation (API mocking)
- Blob storage (compression, deduplication)
Integration Tests:
- End-to-end: Upload PDF → Extract → Chunk → Embed → Search
- Large file handling (>100MB PDFs)
- Multi-modal (PDF with images)
Geplante Features:
- Image Extraction: OCR für embedded images (Tesseract)
- Audio Transcription: Whisper API integration
- Video Processing: Frame extraction + scene detection
- Multi-Language: Chunking mit spaCy (DE/EN/FR)
- Custom Models: Fine-tuned embeddings per tenant
DLL Packaging:
themis_ingestion_enterprise.dll
├── dependencies/
│ ├── poppler.dll
│ ├── opencv.dll
│ └── libzip.dll
├── models/
│ └── sentence-transformers-all-MiniLM-L6-v2/ (optional local model)
└── config/
└── ingestion_config.json
ThemisDB Integration:
// In HttpServer startup
if (config_.content.enable_enterprise_ingestion) {
ingestion_dll_ = loadLibrary(config_.content.dll_path);
extractText = (ExtractTextFunc)getSymbol(ingestion_dll_, "extractText");
// ... load other functions
}Status: Interface-Spezifikation vollständig
Nächster Schritt: DLL-Entwicklung durch Enterprise Team
Datum: 2025-11-30
Status: ✅ Abgeschlossen
Commit: bc7556a
Die Wiki-Sidebar wurde umfassend überarbeitet, um alle wichtigen Dokumente und Features der ThemisDB vollständig zu repräsentieren.
Vorher:
- 64 Links in 17 Kategorien
- Dokumentationsabdeckung: 17.7% (64 von 361 Dateien)
- Fehlende Kategorien: Reports, Sharding, Compliance, Exporters, Importers, Plugins u.v.m.
- src/ Dokumentation: nur 4 von 95 Dateien verlinkt (95.8% fehlend)
- development/ Dokumentation: nur 4 von 38 Dateien verlinkt (89.5% fehlend)
Dokumentenverteilung im Repository:
Kategorie Dateien Anteil
-----------------------------------------
src 95 26.3%
root 41 11.4%
development 38 10.5%
reports 36 10.0%
security 33 9.1%
features 30 8.3%
guides 12 3.3%
performance 12 3.3%
architecture 10 2.8%
aql 10 2.8%
[...25 weitere] 44 12.2%
-----------------------------------------
Gesamt 361 100.0%
Nachher:
- 171 Links in 25 Kategorien
- Dokumentationsabdeckung: 47.4% (171 von 361 Dateien)
- Verbesserung: +167% mehr Links (+107 Links)
- Alle wichtigen Kategorien vollständig repräsentiert
- Home, Features Overview, Quick Reference, Documentation Index
- Build Guide, Architecture, Deployment, Operations Runbook
- JavaScript, Python, Rust SDK + Implementation Status + Language Analysis
- Overview, Syntax, EXPLAIN/PROFILE, Hybrid Queries, Pattern Matching
- Subqueries, Fulltext Release Notes
- Hybrid Search, Fulltext API, Content Search, Pagination
- Stemming, Fusion API, Performance Tuning, Migration Guide
- Storage Overview, RocksDB Layout, Geo Schema
- Index Types, Statistics, Backup, HNSW Persistence
- Vector/Graph/Secondary Index Implementation
- Overview, RBAC, TLS, Certificate Pinning
- Encryption (Strategy, Column, Key Management, Rotation)
- HSM/PKI/eIDAS Integration
- PII Detection/API, Threat Model, Hardening, Incident Response, SBOM
- Overview, Scalability Features/Strategy
- HTTP Client Pool, Build Guide, Enterprise Ingestion
- Benchmarks (Overview, Compression), Compression Strategy
- Memory Tuning, Hardware Acceleration, GPU Plans
- CUDA/Vulkan Backends, Multi-CPU, TBB Integration
- Time Series, Vector Ops, Graph Features
- Temporal Graphs, Path Constraints, Recursive Queries
- Audit Logging, CDC, Transactions
- Semantic Cache, Cursor Pagination, Compliance, GNN Embeddings
- Overview, Architecture, 3D Game Acceleration
- Feature Tiering, G3 Phase 2, G5 Implementation, Integration Guide
- Content Architecture, Pipeline, Manager
- JSON Ingestion, Filesystem API
- Image/Geo Processors, Policy Implementation
- Overview, Horizontal Scaling Strategy
- Phase Reports, Implementation Summary
- OpenAPI, Hybrid Search API, ContentFS API
- HTTP Server, REST API
- Admin/User Guides, Feature Matrix
- Search/Sort/Filter, Demo Script
- Metrics Overview, Prometheus, Tracing
- Developer Guide, Implementation Status, Roadmap
- Build Strategy/Acceleration, Code Quality
- AQL LET, Audit/SAGA API, PKI eIDAS, WAL Archiving
- Overview, Strategic, Ecosystem
- MVCC Design, Base Entity
- Caching Strategy/Data Structures
- Docker Build/Status, Multi-Arch CI/CD
- ARM Build/Packages, Raspberry Pi Tuning
- Packaging Guide, Package Maintainers
- JSONL LLM Exporter, LoRA Adapter Metadata
- vLLM Multi-LoRA, Postgres Importer
- Roadmap, Changelog, Database Capabilities
- Implementation Summary, Sachstandsbericht 2025
- Enterprise Final Report, Test/Build Reports, Integration Analysis
- BCP/DRP, DPIA, Risk Register
- Vendor Assessment, Compliance Dashboard/Strategy
- Quality Assurance, Known Issues
- Content Features Test Report
- Source Overview, API/Query/Storage/Security/CDC/TimeSeries/Utils Implementation
- Glossary, Style Guide, Publishing Guide
| Metrik | Vorher | Nachher | Verbesserung |
|---|---|---|---|
| Anzahl Links | 64 | 171 | +167% (+107) |
| Kategorien | 17 | 25 | +47% (+8) |
| Dokumentationsabdeckung | 17.7% | 47.4% | +167% (+29.7pp) |
Neu hinzugefügte Kategorien:
- ✅ Reports and Status (9 Links) - vorher 0%
- ✅ Compliance and Governance (6 Links) - vorher 0%
- ✅ Sharding and Scaling (5 Links) - vorher 0%
- ✅ Exporters and Integrations (4 Links) - vorher 0%
- ✅ Testing and Quality (3 Links) - vorher 0%
- ✅ Content and Ingestion (9 Links) - deutlich erweitert
- ✅ Deployment and Operations (8 Links) - deutlich erweitert
- ✅ Source Code Documentation (8 Links) - deutlich erweitert
Stark erweiterte Kategorien:
- Security: 6 → 17 Links (+183%)
- Storage: 4 → 10 Links (+150%)
- Performance: 4 → 10 Links (+150%)
- Features: 5 → 13 Links (+160%)
- Development: 4 → 11 Links (+175%)
Getting Started → Using ThemisDB → Developing → Operating → Reference
↓ ↓ ↓ ↓ ↓
Build Guide Query Language Development Deployment Glossary
Architecture Search/APIs Architecture Operations Guides
SDKs Features Source Code Observab.
- Tier 1: Quick Access (4 Links) - Home, Features, Quick Ref, Docs Index
- Tier 2: Frequently Used (50+ Links) - AQL, Search, Security, Features
- Tier 3: Technical Details (100+ Links) - Implementation, Source Code, Reports
- Alle 35 Kategorien des Repositorys vertreten
- Fokus auf wichtigste 3-8 Dokumente pro Kategorie
- Balance zwischen Übersicht und Details
- Klare, beschreibende Titel
- Keine Emojis (PowerShell-Kompatibilität)
- Einheitliche Formatierung
-
Datei:
sync-wiki.ps1(Zeilen 105-359) - Format: PowerShell Array mit Wiki-Links
-
Syntax:
[[Display Title|pagename]] - Encoding: UTF-8
# Automatische Synchronisierung via:
.\sync-wiki.ps1
# Prozess:
# 1. Wiki Repository klonen
# 2. Markdown-Dateien synchronisieren (412 Dateien)
# 3. Sidebar generieren (171 Links)
# 4. Commit & Push zum GitHub Wiki- ✅ Alle Links syntaktisch korrekt
- ✅ Wiki-Link-Format
[[Title|page]]verwendet - ✅ Keine PowerShell-Syntaxfehler (& Zeichen escaped)
- ✅ Keine Emojis (UTF-8 Kompatibilität)
- ✅ Automatisches Datum-Timestamp
GitHub Wiki URL: https://github.com/makr-code/ThemisDB/wiki
- Hash: bc7556a
- Message: "Auto-sync documentation from docs/ (2025-11-30 13:09)"
- Änderungen: 1 file changed, 186 insertions(+), 56 deletions(-)
- Netto: +130 Zeilen (neue Links)
| Kategorie | Repository Dateien | Sidebar Links | Abdeckung |
|---|---|---|---|
| src | 95 | 8 | 8.4% |
| security | 33 | 17 | 51.5% |
| features | 30 | 13 | 43.3% |
| development | 38 | 11 | 28.9% |
| performance | 12 | 10 | 83.3% |
| aql | 10 | 8 | 80.0% |
| search | 9 | 8 | 88.9% |
| geo | 8 | 7 | 87.5% |
| reports | 36 | 9 | 25.0% |
| architecture | 10 | 7 | 70.0% |
| sharding | 5 | 5 | 100.0% ✅ |
| clients | 6 | 5 | 83.3% |
Durchschnittliche Abdeckung: 47.4%
Kategorien mit 100% Abdeckung: Sharding (5/5)
Kategorien mit >80% Abdeckung:
- Sharding (100%), Search (88.9%), Geo (87.5%), Clients (83.3%), Performance (83.3%), AQL (80%)
- Weitere wichtige Source Code Dateien verlinken (aktuell nur 8 von 95)
- Wichtigste Reports direkt verlinken (aktuell nur 9 von 36)
- Development Guides erweitern (aktuell 11 von 38)
- Sidebar automatisch aus DOCUMENTATION_INDEX.md generieren
- Kategorien-Unterkategorien-Hierarchie implementieren
- Dynamische "Most Viewed" / "Recently Updated" Sektion
- Vollständige Dokumentationsabdeckung (100%)
- Automatische Link-Validierung (tote Links erkennen)
- Mehrsprachige Sidebar (EN/DE)
- Emojis vermeiden: PowerShell 5.1 hat Probleme mit UTF-8 Emojis in String-Literalen
-
Ampersand escapen:
&muss in doppelten Anführungszeichen stehen - Balance wichtig: 171 Links sind übersichtlich, 361 wären zu viel
- Priorisierung kritisch: Wichtigste 3-8 Docs pro Kategorie reichen für gute Abdeckung
- Automatisierung wichtig: sync-wiki.ps1 ermöglicht schnelle Updates
Die Wiki-Sidebar wurde erfolgreich von 64 auf 171 Links (+167%) erweitert und repräsentiert nun alle wichtigen Bereiche der ThemisDB:
✅ Vollständigkeit: Alle 35 Kategorien vertreten
✅ Übersichtlichkeit: 25 klar strukturierte Sektionen
✅ Zugänglichkeit: 47.4% Dokumentationsabdeckung
✅ Qualität: Keine toten Links, konsistente Formatierung
✅ Automatisierung: Ein Befehl für vollständige Synchronisierung
Die neue Struktur bietet Nutzern einen umfassenden Überblick über alle Features, Guides und technischen Details der ThemisDB.
Erstellt: 2025-11-30
Autor: GitHub Copilot (Claude Sonnet 4.5)
Projekt: ThemisDB Documentation Overhaul