Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,10 +84,15 @@ Trinity-RFT provides functionalities for users with different backgrounds and ob

<img src="https://img.alicdn.com/imgextra/i1/O1CN01Ti0o4320RywoAuyhN_!!6000000006847-2-tps-3840-2134.png" alt="System architecture" width="600" />

* **Comprehensive Algorithm Support:**
- Out-of-the-box implementations of popular RL algorithms, including [PPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown), [GRPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k), [GSPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/gspo_gsm8k), [TOPR](https://github.com/modelscope/Trinity-RFT/tree/main/examples/topr_gsm8k), [REC](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k), [sPPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sppo_gsm8k), and more.
- Easily extendable to new algorithms by flexibly composing modular components such as policy loss (e.g., [CISPO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/cispo_policy_loss.py), [SAPO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sapo_policy_loss.py)), advantage estimation (e.g., [RLOO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/rloo_advantage.py), [REINFORCE](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/reinforce_advantage.py)), and more.
- Hybrid approaches like [CHORD](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord) (SFT+RL integration) and [LLM-as-a-judge](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_rubric_as_reward) reward modeling.


## 🚀 News

* [2025-12] Trinity-RFT powers "AI Medicine Finder", which enables the AI agent to understand vague symptoms, actively ask follow-up questions, and provide precise recommendations ([News](https://tech.china.com.cn/sx/20251201/411376.shtml)).
* [2025-11] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.3)] Trinity-RFT v0.3.3 released: bug fixes.
* [2025-11] Introducing [Learn-to-Ask](https://github.com/modelscope/Trinity-RFT/tree/main/examples/learn_to_ask): a framework for training proactive dialogue agents from offline expert data ([paper](https://arxiv.org/pdf/2510.25441)).
* [2025-11] Introducing [BOTS](https://github.com/modelscope/Trinity-RFT/tree/main/examples/bots): online RL task selection for efficient LLM fine-tuning ([paper](https://arxiv.org/pdf/2510.26374)).
Expand Down
5 changes: 5 additions & 0 deletions README_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,10 +84,15 @@ Trinity-RFT 面向不同背景和目标的用户提供相应功能:

<img src="https://img.alicdn.com/imgextra/i1/O1CN01Ti0o4320RywoAuyhN_!!6000000006847-2-tps-3840-2134.png" alt="系统架构" width="600" />

* **全面的强化学习算法支持:**
- 支持流行的强化学习算法,包括 [PPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown), [GRPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k), [GSPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/gspo_gsm8k), [TOPR](https://github.com/modelscope/Trinity-RFT/tree/main/examples/topr_gsm8k), [REC](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k), [sPPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sppo_gsm8k)。
- 支持灵活组合模块来构建新算法,如策略损失函数 (e.g., [CISPO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/cispo_policy_loss.py), [SAPO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sapo_policy_loss.py)), 优势估计 (e.g., [RLOO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/rloo_advantage.py), [REINFORCE](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/reinforce_advantage.py))。
- 进阶的算法设计,如 [CHORD](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord) (SFT+RL 集成) 和 [LLM-as-a-judge](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_rubric_as_reward) 奖励建模。


## 🚀 新闻

* [2025-12] Trinity-RFT 助力 AI 找药,让 AI 智能体能够理解模糊症状、主动询问后续问题,并提供精准推荐([新闻](https://tech.china.com.cn/sx/20251201/411376.shtml))。
* [2025-11] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.3)] Trinity-RFT v0.3.3 发布:修复若干 Bug。
* [2025-11] 推出 [Learn-to-Ask](https://github.com/modelscope/Trinity-RFT/tree/main/examples/learn_to_ask):利用离线专家数据,训练具备主动问询能力的对话智能体([论文](https://arxiv.org/pdf/2510.25441)).
* [2025-11] 推出 [BOTS](https://github.com/modelscope/Trinity-RFT/tree/main/examples/bots):在线 RL 任务选择,实现高效 LLM 微调([论文](https://arxiv.org/pdf/2510.26374))。
Expand Down
4 changes: 4 additions & 0 deletions docs/sphinx_doc/source/main.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,10 @@ Trinity-RFT provides functionalities for users with different backgrounds and ob

<img src="https://img.alicdn.com/imgextra/i1/O1CN01Ti0o4320RywoAuyhN_!!6000000006847-2-tps-3840-2134.png" alt="System architecture" width="600" />

* **Comprehensive Algorithm Support:**
- Out-of-the-box implementations of popular RL algorithms, including [PPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown), [GRPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k), [GSPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/gspo_gsm8k), [TOPR](https://github.com/modelscope/Trinity-RFT/tree/main/examples/topr_gsm8k), [REC](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k), [sPPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sppo_gsm8k), and more.
- Easily extendable to new algorithms by flexibly composing modular components such as policy loss (e.g., [CISPO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/cispo_policy_loss.py), [SAPO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sapo_policy_loss.py)), advantage estimation (e.g., [RLOO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/rloo_advantage.py), [REINFORCE](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/reinforce_advantage.py)), and more.
- Hybrid approaches like [CHORD](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord) (SFT+RL integration) and [LLM-as-a-judge](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_rubric_as_reward) reward modeling.


## Acknowledgements
Expand Down
4 changes: 4 additions & 0 deletions docs/sphinx_doc/source_zh/main.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,10 @@ Trinity-RFT 面向不同背景和目标的用户提供相应功能:

<img src="https://img.alicdn.com/imgextra/i1/O1CN01Ti0o4320RywoAuyhN_!!6000000006847-2-tps-3840-2134.png" alt="系统架构" width="600" />

* **全面的强化学习算法支持:**
- 支持流行的强化学习算法,包括 [PPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown), [GRPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k), [GSPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/gspo_gsm8k), [TOPR](https://github.com/modelscope/Trinity-RFT/tree/main/examples/topr_gsm8k), [REC](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k), [sPPO](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sppo_gsm8k)。
- 支持灵活组合模块来构建新算法,如策略损失函数 (e.g., [CISPO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/cispo_policy_loss.py), [SAPO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sapo_policy_loss.py)), 优势估计 (e.g., [RLOO](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/rloo_advantage.py), [REINFORCE](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/reinforce_advantage.py))。
- 进阶的算法设计,如 [CHORD](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord) (SFT+RL 集成) 和 [LLM-as-a-judge](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_rubric_as_reward) 奖励建模。


## 致谢
Expand Down