@@ -301,12 +301,12 @@ def test_gradient_instantiation_dwi_vol_mismatch_error(
301301def test_load_gradients_ndim_error (tmp_path , setup_random_dwi_data , row_major_gradients ):
302302 dwi_dataobj , affine , brainmask_dataobj , b0_dataobj , gradients , b0_thres = setup_random_dwi_data
303303
304- dwi , _ , _ = _dwi_data_to_nifti (
304+ dwi_nii , _ , _ = _dwi_data_to_nifti (
305305 dwi_dataobj , affine , brainmask_dataobj .astype (np .uint8 ), b0_dataobj
306306 )
307307
308308 dwi_fname = tmp_path / "dwi.nii.gz"
309- nb .save (dwi , dwi_fname )
309+ nb .save (dwi_nii , dwi_fname )
310310
311311 # Store a single column from gradients to try loading a 1D-array. Store as
312312 # column or array depending on whether to follow the row-major convention or
@@ -331,15 +331,15 @@ def test_load_gradients_expected_columns_error(
331331):
332332 dwi_dataobj , affine , brainmask_dataobj , b0_dataobj , gradients , b0_thres = setup_random_dwi_data
333333
334- dwi , _ , _ = _dwi_data_to_nifti (
334+ dwi_nii , _ , _ = _dwi_data_to_nifti (
335335 dwi_dataobj ,
336336 affine ,
337337 brainmask_dataobj .astype (np .uint8 ),
338338 b0_dataobj ,
339339 )
340340
341341 dwi_fname = tmp_path / "dwi.nii.gz"
342- nb .save (dwi , dwi_fname )
342+ nb .save (dwi_nii , dwi_fname )
343343
344344 # Remove/prepend columns. At this point, it is irrelevant whether the
345345 # potential N-dimensional vector is normalized or not
@@ -365,15 +365,15 @@ def test_load_gradients_expected_columns_error(
365365def test_load_gradients_bval_bvec_warn (tmp_path , setup_random_dwi_data ):
366366 dwi_dataobj , affine , brainmask_dataobj , b0_dataobj , gradients , _ = setup_random_dwi_data
367367
368- dwi , _ , _ = _dwi_data_to_nifti (
368+ dwi_nii , _ , _ = _dwi_data_to_nifti (
369369 dwi_dataobj ,
370370 affine ,
371371 brainmask_dataobj .astype (np .uint8 ),
372372 b0_dataobj ,
373373 )
374374
375375 dwi_fname = tmp_path / "dwi.nii.gz"
376- nb .save (dwi , dwi_fname )
376+ nb .save (dwi_nii , dwi_fname )
377377
378378 b0_fname = tmp_path / "b0.nii.gz"
379379 nb .Nifti1Image (b0_dataobj , np .eye (4 ), None ).to_filename (b0_fname )
@@ -412,23 +412,23 @@ def test_load_gradients(tmp_path, setup_random_dwi_data, row_major_gradients):
412412 b0_thres ,
413413 ) = setup_random_dwi_data
414414
415- dwi , _ , _ = _dwi_data_to_nifti (
415+ dwi_nii , _ , _ = _dwi_data_to_nifti (
416416 dwi_dataobj ,
417417 affine ,
418418 brainmask_dataobj .astype (np .uint8 ),
419419 b0_dataobj ,
420420 )
421421
422422 dwi_fname = tmp_path / "dwi.nii.gz"
423- nb .save (dwi , dwi_fname )
423+ nb .save (dwi_nii , dwi_fname )
424424
425425 if not row_major_gradients :
426426 gradients = gradients .T
427427
428428 grads_fname = tmp_path / "grads.txt"
429429 np .savetxt (grads_fname , gradients , fmt = "%.6f" )
430430
431- dwi = from_nii (dwi_fname , gradients_file = grads_fname )
431+ dwi_obj = from_nii (dwi_fname , gradients_file = grads_fname )
432432 if not row_major_gradients :
433433 gradmask = gradients .T [:, - 1 ] > b0_thres
434434 else :
@@ -439,9 +439,9 @@ def test_load_gradients(tmp_path, setup_random_dwi_data, row_major_gradients):
439439 else :
440440 expected_nonzero_grads = gradients [gradmask ]
441441
442- assert hasattr (dwi , "gradients" )
443- assert dwi .gradients .shape == expected_nonzero_grads .shape
444- assert np .allclose (dwi .gradients , expected_nonzero_grads )
442+ assert hasattr (dwi_obj , "gradients" )
443+ assert dwi_obj .gradients .shape == expected_nonzero_grads .shape
444+ assert np .allclose (dwi_obj .gradients , expected_nonzero_grads )
445445
446446
447447@pytest .mark .random_gtab_data (10 , (1000 , 2000 ), 2 )
@@ -461,15 +461,15 @@ def test_load_bvecs_bvals(tmp_path, setup_random_dwi_data, transpose_bvals, tran
461461 bvals = gradients [:, - 1 ]
462462 bvecs = gradients [:, :- 1 ]
463463
464- dwi , _ , _ = _dwi_data_to_nifti (
464+ dwi_nii , _ , _ = _dwi_data_to_nifti (
465465 dwi_dataobj ,
466466 affine ,
467467 brainmask_dataobj .astype (np .uint8 ),
468468 b0_dataobj ,
469469 )
470470
471471 dwi_fname = tmp_path / "dwi.nii.gz"
472- nb .save (dwi , dwi_fname )
472+ nb .save (dwi_nii , dwi_fname )
473473
474474 if transpose_bvals :
475475 bvals = bvals .T
@@ -481,29 +481,29 @@ def test_load_bvecs_bvals(tmp_path, setup_random_dwi_data, transpose_bvals, tran
481481 np .savetxt (bvec_fname , bvecs , fmt = "%.6f" )
482482 np .savetxt (bval_fname , bvals , fmt = "%.6f" )
483483
484- dwi = from_nii (dwi_fname , bvec_file = bvec_fname , bval_file = bval_fname )
484+ dwi_obj = from_nii (dwi_fname , bvec_file = bvec_fname , bval_file = bval_fname )
485485 gradmask = gradients [:, - 1 ] > b0_thres
486486
487487 expected_nonzero_grads = gradients [gradmask ]
488- assert hasattr (dwi , "gradients" )
489- assert dwi .gradients .shape == expected_nonzero_grads .shape
490- assert np .allclose (dwi .gradients , expected_nonzero_grads )
488+ assert hasattr (dwi_obj , "gradients" )
489+ assert dwi_obj .gradients .shape == expected_nonzero_grads .shape
490+ assert np .allclose (dwi_obj .gradients , expected_nonzero_grads )
491491
492492
493493@pytest .mark .random_gtab_data (10 , (1000 , 2000 ), 2 )
494494@pytest .mark .random_dwi_data (50 , (34 , 36 , 24 ), True )
495495def test_load_gradients_missing (tmp_path , setup_random_dwi_data ):
496496 dwi_dataobj , affine , brainmask_dataobj , b0_dataobj , _ , _ = setup_random_dwi_data
497497
498- dwi , _ , _ = _dwi_data_to_nifti (
498+ dwi_nii , _ , _ = _dwi_data_to_nifti (
499499 dwi_dataobj ,
500500 affine ,
501501 brainmask_dataobj .astype (np .uint8 ),
502502 b0_dataobj ,
503503 )
504504
505505 dwi_fname = tmp_path / "dwi.nii.gz"
506- nb .save (dwi , dwi_fname )
506+ nb .save (dwi_nii , dwi_fname )
507507
508508 with pytest .raises (RuntimeError , match = re .escape (GRADIENT_DATA_MISSING_ERROR )):
509509 from_nii (dwi_fname )
@@ -632,7 +632,7 @@ def test_load(datadir, tmp_path, insert_b0, rotate_bvecs): # noqa: C901
632632def test_equality_operator (tmp_path , setup_random_dwi_data ):
633633 dwi_dataobj , affine , brainmask_dataobj , b0_dataobj , gradients , b0_thres = setup_random_dwi_data
634634
635- dwi , brainmask , b0 = _dwi_data_to_nifti (
635+ dwi_nii , brainmask , b0 = _dwi_data_to_nifti (
636636 dwi_dataobj ,
637637 affine ,
638638 brainmask_dataobj .astype (np .uint8 ),
@@ -644,7 +644,7 @@ def test_equality_operator(tmp_path, setup_random_dwi_data):
644644 brainmask_fname ,
645645 b0_fname ,
646646 gradients_fname ,
647- ) = _serialize_dwi_data (dwi , brainmask , b0 , gradients , tmp_path )
647+ ) = _serialize_dwi_data (dwi_nii , brainmask , b0 , gradients , tmp_path )
648648
649649 # Read back using public API
650650 dwi_obj_from_nii = from_nii (
0 commit comments