Skip to content

Commit 9b59f1c

Browse files
authored
Merge pull request #362 from jhlegarreta/sty/make-test-vble-naming-clear
STY: Make DWI data variable naming more clear in dMRI data test
2 parents d353640 + 61b538b commit 9b59f1c

File tree

1 file changed

+22
-22
lines changed

1 file changed

+22
-22
lines changed

test/test_data_dmri.py

Lines changed: 22 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -301,12 +301,12 @@ def test_gradient_instantiation_dwi_vol_mismatch_error(
301301
def test_load_gradients_ndim_error(tmp_path, setup_random_dwi_data, row_major_gradients):
302302
dwi_dataobj, affine, brainmask_dataobj, b0_dataobj, gradients, b0_thres = setup_random_dwi_data
303303

304-
dwi, _, _ = _dwi_data_to_nifti(
304+
dwi_nii, _, _ = _dwi_data_to_nifti(
305305
dwi_dataobj, affine, brainmask_dataobj.astype(np.uint8), b0_dataobj
306306
)
307307

308308
dwi_fname = tmp_path / "dwi.nii.gz"
309-
nb.save(dwi, dwi_fname)
309+
nb.save(dwi_nii, dwi_fname)
310310

311311
# Store a single column from gradients to try loading a 1D-array. Store as
312312
# column or array depending on whether to follow the row-major convention or
@@ -331,15 +331,15 @@ def test_load_gradients_expected_columns_error(
331331
):
332332
dwi_dataobj, affine, brainmask_dataobj, b0_dataobj, gradients, b0_thres = setup_random_dwi_data
333333

334-
dwi, _, _ = _dwi_data_to_nifti(
334+
dwi_nii, _, _ = _dwi_data_to_nifti(
335335
dwi_dataobj,
336336
affine,
337337
brainmask_dataobj.astype(np.uint8),
338338
b0_dataobj,
339339
)
340340

341341
dwi_fname = tmp_path / "dwi.nii.gz"
342-
nb.save(dwi, dwi_fname)
342+
nb.save(dwi_nii, dwi_fname)
343343

344344
# Remove/prepend columns. At this point, it is irrelevant whether the
345345
# potential N-dimensional vector is normalized or not
@@ -365,15 +365,15 @@ def test_load_gradients_expected_columns_error(
365365
def test_load_gradients_bval_bvec_warn(tmp_path, setup_random_dwi_data):
366366
dwi_dataobj, affine, brainmask_dataobj, b0_dataobj, gradients, _ = setup_random_dwi_data
367367

368-
dwi, _, _ = _dwi_data_to_nifti(
368+
dwi_nii, _, _ = _dwi_data_to_nifti(
369369
dwi_dataobj,
370370
affine,
371371
brainmask_dataobj.astype(np.uint8),
372372
b0_dataobj,
373373
)
374374

375375
dwi_fname = tmp_path / "dwi.nii.gz"
376-
nb.save(dwi, dwi_fname)
376+
nb.save(dwi_nii, dwi_fname)
377377

378378
b0_fname = tmp_path / "b0.nii.gz"
379379
nb.Nifti1Image(b0_dataobj, np.eye(4), None).to_filename(b0_fname)
@@ -412,23 +412,23 @@ def test_load_gradients(tmp_path, setup_random_dwi_data, row_major_gradients):
412412
b0_thres,
413413
) = setup_random_dwi_data
414414

415-
dwi, _, _ = _dwi_data_to_nifti(
415+
dwi_nii, _, _ = _dwi_data_to_nifti(
416416
dwi_dataobj,
417417
affine,
418418
brainmask_dataobj.astype(np.uint8),
419419
b0_dataobj,
420420
)
421421

422422
dwi_fname = tmp_path / "dwi.nii.gz"
423-
nb.save(dwi, dwi_fname)
423+
nb.save(dwi_nii, dwi_fname)
424424

425425
if not row_major_gradients:
426426
gradients = gradients.T
427427

428428
grads_fname = tmp_path / "grads.txt"
429429
np.savetxt(grads_fname, gradients, fmt="%.6f")
430430

431-
dwi = from_nii(dwi_fname, gradients_file=grads_fname)
431+
dwi_obj = from_nii(dwi_fname, gradients_file=grads_fname)
432432
if not row_major_gradients:
433433
gradmask = gradients.T[:, -1] > b0_thres
434434
else:
@@ -439,9 +439,9 @@ def test_load_gradients(tmp_path, setup_random_dwi_data, row_major_gradients):
439439
else:
440440
expected_nonzero_grads = gradients[gradmask]
441441

442-
assert hasattr(dwi, "gradients")
443-
assert dwi.gradients.shape == expected_nonzero_grads.shape
444-
assert np.allclose(dwi.gradients, expected_nonzero_grads)
442+
assert hasattr(dwi_obj, "gradients")
443+
assert dwi_obj.gradients.shape == expected_nonzero_grads.shape
444+
assert np.allclose(dwi_obj.gradients, expected_nonzero_grads)
445445

446446

447447
@pytest.mark.random_gtab_data(10, (1000, 2000), 2)
@@ -461,15 +461,15 @@ def test_load_bvecs_bvals(tmp_path, setup_random_dwi_data, transpose_bvals, tran
461461
bvals = gradients[:, -1]
462462
bvecs = gradients[:, :-1]
463463

464-
dwi, _, _ = _dwi_data_to_nifti(
464+
dwi_nii, _, _ = _dwi_data_to_nifti(
465465
dwi_dataobj,
466466
affine,
467467
brainmask_dataobj.astype(np.uint8),
468468
b0_dataobj,
469469
)
470470

471471
dwi_fname = tmp_path / "dwi.nii.gz"
472-
nb.save(dwi, dwi_fname)
472+
nb.save(dwi_nii, dwi_fname)
473473

474474
if transpose_bvals:
475475
bvals = bvals.T
@@ -481,29 +481,29 @@ def test_load_bvecs_bvals(tmp_path, setup_random_dwi_data, transpose_bvals, tran
481481
np.savetxt(bvec_fname, bvecs, fmt="%.6f")
482482
np.savetxt(bval_fname, bvals, fmt="%.6f")
483483

484-
dwi = from_nii(dwi_fname, bvec_file=bvec_fname, bval_file=bval_fname)
484+
dwi_obj = from_nii(dwi_fname, bvec_file=bvec_fname, bval_file=bval_fname)
485485
gradmask = gradients[:, -1] > b0_thres
486486

487487
expected_nonzero_grads = gradients[gradmask]
488-
assert hasattr(dwi, "gradients")
489-
assert dwi.gradients.shape == expected_nonzero_grads.shape
490-
assert np.allclose(dwi.gradients, expected_nonzero_grads)
488+
assert hasattr(dwi_obj, "gradients")
489+
assert dwi_obj.gradients.shape == expected_nonzero_grads.shape
490+
assert np.allclose(dwi_obj.gradients, expected_nonzero_grads)
491491

492492

493493
@pytest.mark.random_gtab_data(10, (1000, 2000), 2)
494494
@pytest.mark.random_dwi_data(50, (34, 36, 24), True)
495495
def test_load_gradients_missing(tmp_path, setup_random_dwi_data):
496496
dwi_dataobj, affine, brainmask_dataobj, b0_dataobj, _, _ = setup_random_dwi_data
497497

498-
dwi, _, _ = _dwi_data_to_nifti(
498+
dwi_nii, _, _ = _dwi_data_to_nifti(
499499
dwi_dataobj,
500500
affine,
501501
brainmask_dataobj.astype(np.uint8),
502502
b0_dataobj,
503503
)
504504

505505
dwi_fname = tmp_path / "dwi.nii.gz"
506-
nb.save(dwi, dwi_fname)
506+
nb.save(dwi_nii, dwi_fname)
507507

508508
with pytest.raises(RuntimeError, match=re.escape(GRADIENT_DATA_MISSING_ERROR)):
509509
from_nii(dwi_fname)
@@ -632,7 +632,7 @@ def test_load(datadir, tmp_path, insert_b0, rotate_bvecs): # noqa: C901
632632
def test_equality_operator(tmp_path, setup_random_dwi_data):
633633
dwi_dataobj, affine, brainmask_dataobj, b0_dataobj, gradients, b0_thres = setup_random_dwi_data
634634

635-
dwi, brainmask, b0 = _dwi_data_to_nifti(
635+
dwi_nii, brainmask, b0 = _dwi_data_to_nifti(
636636
dwi_dataobj,
637637
affine,
638638
brainmask_dataobj.astype(np.uint8),
@@ -644,7 +644,7 @@ def test_equality_operator(tmp_path, setup_random_dwi_data):
644644
brainmask_fname,
645645
b0_fname,
646646
gradients_fname,
647-
) = _serialize_dwi_data(dwi, brainmask, b0, gradients, tmp_path)
647+
) = _serialize_dwi_data(dwi_nii, brainmask, b0, gradients, tmp_path)
648648

649649
# Read back using public API
650650
dwi_obj_from_nii = from_nii(

0 commit comments

Comments
 (0)