|
| 1 | +# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- |
| 2 | +# vi: set ft=python sts=4 ts=4 sw=4 et: |
| 3 | +# |
| 4 | +# Copyright The NiPreps Developers <[email protected]> |
| 5 | +# |
| 6 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 7 | +# you may not use this file except in compliance with the License. |
| 8 | +# You may obtain a copy of the License at |
| 9 | +# |
| 10 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | +# |
| 12 | +# Unless required by applicable law or agreed to in writing, software |
| 13 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | +# See the License for the specific language governing permissions and |
| 16 | +# limitations under the License. |
| 17 | +# |
| 18 | +# We support and encourage derived works from this project, please read |
| 19 | +# about our expectations at |
| 20 | +# |
| 21 | +# https://www.nipreps.org/community/licensing/ |
| 22 | +# |
| 23 | + |
| 24 | +import h5py |
| 25 | +import nibabel as nb |
| 26 | +import numpy as np |
| 27 | +import pytest |
| 28 | + |
| 29 | +from nifreeze import data |
| 30 | +from nifreeze.data import dmri, pet |
| 31 | + |
| 32 | + |
| 33 | +def _raise_type(*args, **kwargs): |
| 34 | + raise TypeError("Cannot read") |
| 35 | + |
| 36 | + |
| 37 | +def test_load_hdf5_error(monkeypatch, tmp_path): |
| 38 | + fname = tmp_path / ("dataset" + data.NFDH5_EXT) |
| 39 | + |
| 40 | + # All three dataclasses raise TypeError: load should raise TypeError |
| 41 | + monkeypatch.setattr( |
| 42 | + data.BaseDataset, |
| 43 | + "from_filename", |
| 44 | + classmethod(lambda _cls, fn: _raise_type()), |
| 45 | + raising=False, |
| 46 | + ) |
| 47 | + monkeypatch.setattr( |
| 48 | + data.PET, "from_filename", classmethod(lambda _cls, fn: _raise_type()), raising=False |
| 49 | + ) |
| 50 | + monkeypatch.setattr( |
| 51 | + data.DWI, "from_filename", classmethod(lambda _cls, fn: _raise_type()), raising=False |
| 52 | + ) |
| 53 | + |
| 54 | + with pytest.raises(TypeError, match="Could not read data"): |
| 55 | + data.load(fname) |
| 56 | + |
| 57 | + |
| 58 | +@pytest.mark.parametrize( |
| 59 | + "target, prior_failures", |
| 60 | + [ |
| 61 | + (data.BaseDataset, []), |
| 62 | + (data.PET, [data.BaseDataset]), |
| 63 | + (data.DWI, [data.BaseDataset, data.PET]), |
| 64 | + ], |
| 65 | +) |
| 66 | +def test_load_hdf5_sentinel(monkeypatch, tmp_path, target, prior_failures): |
| 67 | + fname = tmp_path / ("dataset" + data.NFDH5_EXT) |
| 68 | + |
| 69 | + sentinel = object() |
| 70 | + |
| 71 | + # Force earlier readers to raise TypeError so load() will try the target |
| 72 | + for cls in prior_failures: |
| 73 | + monkeypatch.setattr( |
| 74 | + cls, "from_filename", classmethod(lambda _cls, fn: _raise_type()), raising=False |
| 75 | + ) |
| 76 | + |
| 77 | + # Make the target reader return our sentinel |
| 78 | + monkeypatch.setattr( |
| 79 | + target, "from_filename", classmethod(lambda _cls, fn: sentinel), raising=False |
| 80 | + ) |
| 81 | + |
| 82 | + assert data.load(fname) is sentinel |
| 83 | + |
| 84 | + |
| 85 | +@pytest.mark.parametrize( |
| 86 | + "target, prior_failures, vol_size", |
| 87 | + [ |
| 88 | + (data.BaseDataset, [], (4, 5, 6, 2)), |
| 89 | + (data.PET, [data.BaseDataset], (3, 4, 3, 5)), |
| 90 | + (data.DWI, [data.BaseDataset, data.PET], (2, 2, 6, 4)), |
| 91 | + ], |
| 92 | +) |
| 93 | +def test_load_hdf5_data(request, tmp_path, monkeypatch, target, prior_failures, vol_size): |
| 94 | + """ |
| 95 | + For each target dataclass, write a tiny HDF5 file with random data, force |
| 96 | + earlier readers to raise TypeError, and monkeypatch the target's |
| 97 | + from_filename to read the HDF5 and return a small object containing the data |
| 98 | + so we can assert it was read. |
| 99 | + """ |
| 100 | + |
| 101 | + rng = request.node.rng |
| 102 | + |
| 103 | + # Create random arrays to write into the HDF5 file |
| 104 | + dataobj = rng.random(vol_size).astype(np.float32) |
| 105 | + affine = np.eye(4).astype(np.float64) |
| 106 | + brainmask_dataobj = rng.choice([True, False], size=dataobj.shape[:3]).astype(np.uint8) |
| 107 | + |
| 108 | + fname = tmp_path / ("dataset" + data.NFDH5_EXT) |
| 109 | + |
| 110 | + # Write a minimal HDF5 layout that our patched reader will understand |
| 111 | + with h5py.File(fname, "w") as f: |
| 112 | + f.create_dataset("dataobj", data=dataobj) |
| 113 | + f.create_dataset("affine", data=affine) |
| 114 | + f.create_dataset("brainmask", data=brainmask_dataobj) |
| 115 | + |
| 116 | + # Force earlier readers to raise TypeError so load() will try the target |
| 117 | + for cls in prior_failures: |
| 118 | + monkeypatch.setattr( |
| 119 | + cls, "from_filename", classmethod(lambda _cls, fn: _raise_type()), raising=False |
| 120 | + ) |
| 121 | + |
| 122 | + # Define a reader that reads our HDF5 layout and returns a simple object |
| 123 | + def _from_filename(filename): |
| 124 | + with h5py.File(filename, "r") as _f: |
| 125 | + _dataobj = np.array(_f["dataobj"]) |
| 126 | + _affine = np.array(_f["affine"]) |
| 127 | + _brainmask = np.array(_f["brainmask"]).astype(bool) |
| 128 | + |
| 129 | + class SimpleBaseDataset: |
| 130 | + def __init__(self, **kwargs): |
| 131 | + self.dataobj = kwargs["dataobj"] |
| 132 | + self.affine = kwargs["affine"] |
| 133 | + self.brainmask = None |
| 134 | + |
| 135 | + obj = SimpleBaseDataset() |
| 136 | + # Mirror names that consumers expect |
| 137 | + obj.dataobj = _dataobj |
| 138 | + obj.affine = _affine |
| 139 | + obj.brainmask = _brainmask |
| 140 | + return obj |
| 141 | + |
| 142 | + # Patch the target class's from_filename to use our reader |
| 143 | + monkeypatch.setattr( |
| 144 | + target, |
| 145 | + "from_filename", |
| 146 | + classmethod(lambda _cls, fn: _from_filename(fn)), |
| 147 | + raising=False, |
| 148 | + ) |
| 149 | + |
| 150 | + # Call the top-level loader and verify we got back the object with the data |
| 151 | + retval = data.load(fname) |
| 152 | + |
| 153 | + # The returned object should have the attributes we set above |
| 154 | + assert hasattr(retval, "dataobj") |
| 155 | + assert hasattr(retval, "affine") |
| 156 | + assert hasattr(retval, "brainmask") |
| 157 | + |
| 158 | + assert retval.dataobj is not None |
| 159 | + assert retval.dataobj.shape == dataobj.shape |
| 160 | + assert np.allclose(retval.dataobj, dataobj) |
| 161 | + |
| 162 | + assert retval.affine is not None |
| 163 | + assert retval.affine.shape == affine.shape |
| 164 | + assert np.array_equal(retval.affine, affine) |
| 165 | + |
| 166 | + assert retval.brainmask is not None |
| 167 | + assert retval.brainmask.shape == brainmask_dataobj.shape |
| 168 | + assert np.array_equal(retval.brainmask, brainmask_dataobj) |
| 169 | + |
| 170 | + |
| 171 | +@pytest.mark.random_uniform_spatial_data((5, 2, 4), 0.0, 1.0) |
| 172 | +@pytest.mark.random_uniform_spatial_data((2, 2, 2, 4), 0.0, 1.0) |
| 173 | +@pytest.mark.parametrize( |
| 174 | + "use_brainmask, kwargs", |
| 175 | + [ |
| 176 | + (True, {}), |
| 177 | + (False, {"data": 2.0}), |
| 178 | + ], |
| 179 | +) |
| 180 | +def test_load_base_nifti( |
| 181 | + request, tmp_path, monkeypatch, setup_random_uniform_spatial_data, use_brainmask, kwargs |
| 182 | +): |
| 183 | + rng = request.node.rng |
| 184 | + dataobj, affine = setup_random_uniform_spatial_data |
| 185 | + img = nb.Nifti1Image(dataobj, affine) |
| 186 | + img_fname = tmp_path / "data.nii.gz" |
| 187 | + nb.save(img, img_fname) |
| 188 | + |
| 189 | + brainmask_dataobj = np.ones(dataobj.shape[:3]).astype(bool) |
| 190 | + if use_brainmask: |
| 191 | + brainmask_dataobj = rng.choice([True, False], size=dataobj.shape[:3]).astype(bool) |
| 192 | + |
| 193 | + brainmask = nb.Nifti1Image(brainmask_dataobj.astype(np.uint8), affine) |
| 194 | + brainmask_fname = tmp_path / "brainmask.nii.gz" |
| 195 | + nb.save(brainmask, brainmask_fname) |
| 196 | + |
| 197 | + # Monkeypatch BaseDataset to a minimal holder class that mirrors the API |
| 198 | + class SimpleBaseDataset: |
| 199 | + def __init__(self, **kwargs): |
| 200 | + self.dataobj = kwargs["dataobj"] |
| 201 | + self.affine = kwargs["affine"] |
| 202 | + self.brainmask = None |
| 203 | + |
| 204 | + monkeypatch.setattr(data, "BaseDataset", SimpleBaseDataset) |
| 205 | + |
| 206 | + retval = data.load(img_fname, brainmask_file=brainmask_fname, **kwargs) |
| 207 | + |
| 208 | + assert isinstance(retval, data.BaseDataset) |
| 209 | + |
| 210 | + assert hasattr(retval, "dataobj") |
| 211 | + assert hasattr(retval, "brainmask") |
| 212 | + assert hasattr(retval, "affine") |
| 213 | + |
| 214 | + assert retval.dataobj is not None |
| 215 | + assert np.allclose(retval.dataobj, dataobj) |
| 216 | + |
| 217 | + assert retval.affine is not None |
| 218 | + assert np.allclose(retval.affine, affine) |
| 219 | + |
| 220 | + assert retval.brainmask is not None |
| 221 | + assert np.array_equal(retval.brainmask, brainmask_dataobj) |
| 222 | + |
| 223 | + |
| 224 | +def test_load_dmri_from_nii(monkeypatch, tmp_path): |
| 225 | + fname = tmp_path / "image.nii" |
| 226 | + mask = tmp_path / "mask.nii" |
| 227 | + |
| 228 | + called = {} |
| 229 | + sentinel = object() |
| 230 | + |
| 231 | + def dummy_from_nii(filename, brainmask_file=None, **kwargs): |
| 232 | + called["filename"] = filename |
| 233 | + called["brainmask_file"] = brainmask_file |
| 234 | + called["kwargs"] = kwargs |
| 235 | + return sentinel |
| 236 | + |
| 237 | + monkeypatch.setattr(dmri, "from_nii", dummy_from_nii) |
| 238 | + |
| 239 | + res = data.load(fname, brainmask_file=mask, gradients_file="grad.txt", bvec_file="bvecs.txt") |
| 240 | + |
| 241 | + assert res is sentinel |
| 242 | + assert called["filename"] == fname |
| 243 | + assert called["brainmask_file"] == mask |
| 244 | + assert "gradients_file" in called["kwargs"] |
| 245 | + assert ( |
| 246 | + "bvec_file" in called["kwargs"] |
| 247 | + or "bvecs_file" in called["kwargs"] |
| 248 | + or "bvecs" in called["kwargs"] |
| 249 | + ) |
| 250 | + |
| 251 | + |
| 252 | +def test_load_pet_from_nii(monkeypatch, tmp_path): |
| 253 | + fname = tmp_path / "image.nii" |
| 254 | + mask = tmp_path / "mask.nii" |
| 255 | + |
| 256 | + called = {} |
| 257 | + sentinel = object() |
| 258 | + |
| 259 | + def dummy_from_nii(filename, brainmask_file=None, **kwargs): |
| 260 | + called["filename"] = filename |
| 261 | + called["brainmask_file"] = brainmask_file |
| 262 | + called["kwargs"] = kwargs |
| 263 | + return sentinel |
| 264 | + |
| 265 | + monkeypatch.setattr(pet, "from_nii", dummy_from_nii) |
| 266 | + |
| 267 | + retval = data.load(fname, brainmask_file=mask, temporal_file="temporal.txt") |
| 268 | + |
| 269 | + assert retval is sentinel |
| 270 | + assert called["filename"] == fname |
| 271 | + assert called["brainmask_file"] == mask |
| 272 | + assert "temporal_file" in called["kwargs"] |
0 commit comments