@@ -136,7 +136,7 @@ def make_random(is_discrete, d):
136136
137137 for inf in infs :
138138 with self .subTest (d_w = d_w , d_x = d_x , d_y = d_y , d_t = d_t ,
139- is_discrete = is_discrete , est = est , inf = inf ):
139+ is_discrete = is_discrete , est = type ( est ). __name__ , inf = repr ( inf ) ):
140140 est .fit (Y , T , X = X , W = W , inference = inf )
141141
142142 # ensure that we can serialize fit estimator
@@ -453,9 +453,12 @@ def test_drlearner_all_attributes(self):
453453 if (not isinstance (models [2 ], StatsModelsLinearRegression )) and (sample_var
454454 is not None ):
455455 continue
456- with self .subTest (X = X , W = W , sample_weight = sample_weight , freq_weight = freq_weight ,
457- sample_var = sample_var ,
458- featurizer = featurizer , models = models ,
456+ with self .subTest (X_present = (X is not None ), W_present = (W is not None ),
457+ sample_weight_present = (sample_weight is not None ),
458+ freq_weight_present = (freq_weight is not None ),
459+ sample_var_present = (sample_var is not None ),
460+ featurizer = repr (featurizer ),
461+ models = [type (m ).__name__ for m in models ],
459462 multitask_model_final = multitask_model_final ):
460463 est = DRLearner (model_propensity = models [0 ],
461464 model_regression = models [1 ],
@@ -577,10 +580,13 @@ def _test_drlearner_with_inference_all_attributes(self, use_ray):
577580 LinearRegression (), SparseLinearDRLearner ,
578581 'auto' )
579582 ]:
580- with self .subTest (X = X , W = W , sample_weight = sample_weight , freq_weight = freq_weight ,
581- sample_var = sample_var ,
582- featurizer = featurizer , model_y = model_y , model_t = model_t ,
583- est_class = est_class , inference = inference ):
583+ with self .subTest (X_present = (X is not None ), W_present = (W is not None ),
584+ sample_weight_present = (sample_weight is not None ),
585+ freq_weight_present = (freq_weight is not None ),
586+ sample_var_present = (sample_var is not None ),
587+ featurizer = repr (featurizer ),
588+ model_y = type (model_y ).__name__ , model_t = type (model_t ).__name__ ,
589+ est_class = est_class .__name__ , inference = repr (inference )):
584590 if (X is None ) and (est_class == SparseLinearDRLearner ):
585591 continue
586592 if (X is None ) and (est_class == ForestDRLearner ):
0 commit comments