Skip to content

Allow users to configure vLLM runtime parameters #13

@anfredette

Description

@anfredette

vLLM has many configuration knobs (e.g., max_num_seqs, gpu_memory_utilization, enable_prefix_caching) that impact performance. We should expose relevant parameters for user customization.

Acceptance Criteria

  • Identify most impactful vLLM configuration parameters
  • Add fields to DeploymentIntent schema for vLLM config
  • Update KServe InferenceService template to include vLLM args
  • Provide sensible defaults based on use case and traffic profile
  • Add UI controls for adjusting vLLM parameters (advanced mode)
  • Document each parameter and its impact on performance

Notes

  • Start with most critical parameters (e.g., KV cache settings, memory utilization)
  • Advanced users may want fine-grained control
  • Consider auto-tuning parameters based on traffic profile in future

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions