|
1 | 1 | from __future__ import annotations |
2 | 2 |
|
3 | 3 | import numpy as np |
| 4 | +import pytest |
4 | 5 |
|
5 | 6 | from scanpy.tools import filter_rank_genes_groups, rank_genes_groups |
6 | 7 | from testing.scanpy._helpers.data import pbmc68k_reduced |
7 | 8 |
|
8 | | -names_no_reference = np.array( |
| 9 | +NAMES_NO_REF = [ |
| 10 | + ["CD3D", "ITM2A", "CD3D", "CCL5", "CD7", "nan", "CD79A", "nan", "NKG7", "LYZ"], |
| 11 | + ["CD3E", "CD3D", "nan", "NKG7", "CD3D", "AIF1", "CD79B", "nan", "GNLY", "CST3"], |
| 12 | + ["IL32", "RPL39", "nan", "CST7", "nan", "nan", "nan", "SNHG7", "CD7", "nan"], |
| 13 | + ["nan", "SRSF7", "IL32", "GZMA", "nan", "LST1", "IGJ", "nan", "CTSW", "nan"], |
| 14 | + ["nan", "nan", "CD2", "CTSW", "CD8B", "TYROBP", "ISG20", "SNHG8", "GZMB", "nan"], |
| 15 | +] |
| 16 | + |
| 17 | +NAMES_REF = [ |
| 18 | + ["CD3D", "ITM2A", "CD3D", "nan", "CD3D", "nan", "CD79A", "nan", "CD7"], |
| 19 | + ["nan", "nan", "nan", "CD3D", "nan", "AIF1", "nan", "nan", "NKG7"], |
| 20 | + ["nan", "nan", "nan", "NKG7", "nan", "FCGR3A", "ISG20", "SNHG7", "CTSW"], |
| 21 | + ["nan", "CD3D", "nan", "CCL5", "CD7", "nan", "CD79B", "nan", "GNLY"], |
| 22 | + ["CD3E", "IL32", "nan", "IL32", "CD27", "FCER1G", "nan", "nan", "nan"], |
| 23 | +] |
| 24 | + |
| 25 | +NAMES_NO_REF_COMPARE_ABS = [ |
9 | 26 | [ |
10 | | - ["CD3D", "ITM2A", "CD3D", "CCL5", "CD7", "nan", "CD79A", "nan", "NKG7", "LYZ"], |
11 | | - ["CD3E", "CD3D", "nan", "NKG7", "CD3D", "AIF1", "CD79B", "nan", "GNLY", "CST3"], |
12 | | - ["IL32", "RPL39", "nan", "CST7", "nan", "nan", "nan", "SNHG7", "CD7", "nan"], |
13 | | - ["nan", "SRSF7", "IL32", "GZMA", "nan", "LST1", "IGJ", "nan", "CTSW", "nan"], |
14 | | - [ |
15 | | - "nan", |
16 | | - "nan", |
17 | | - "CD2", |
18 | | - "CTSW", |
19 | | - "CD8B", |
20 | | - "TYROBP", |
21 | | - "ISG20", |
22 | | - "SNHG8", |
23 | | - "GZMB", |
24 | | - "nan", |
25 | | - ], |
26 | | - ] |
27 | | -) |
28 | | - |
29 | | -names_reference = np.array( |
| 27 | + *("CD3D", "ITM2A", "HLA-DRB1", "CCL5", "HLA-DPA1"), |
| 28 | + *("nan", "CD79A", "nan", "NKG7", "LYZ"), |
| 29 | + ], |
30 | 30 | [ |
31 | | - ["CD3D", "ITM2A", "CD3D", "nan", "CD3D", "nan", "CD79A", "nan", "CD7"], |
32 | | - ["nan", "nan", "nan", "CD3D", "nan", "AIF1", "nan", "nan", "NKG7"], |
33 | | - ["nan", "nan", "nan", "NKG7", "nan", "FCGR3A", "ISG20", "SNHG7", "CTSW"], |
34 | | - ["nan", "CD3D", "nan", "CCL5", "CD7", "nan", "CD79B", "nan", "GNLY"], |
35 | | - ["CD3E", "IL32", "nan", "IL32", "CD27", "FCER1G", "nan", "nan", "nan"], |
36 | | - ] |
37 | | -) |
38 | | - |
39 | | -names_compare_abs = np.array( |
| 31 | + *("HLA-DPA1", "nan", "CD3D", "NKG7", "HLA-DRB1"), |
| 32 | + *("AIF1", "CD79B", "nan", "GNLY", "CST3"), |
| 33 | + ], |
40 | 34 | [ |
41 | | - [ |
42 | | - "CD3D", |
43 | | - "ITM2A", |
44 | | - "HLA-DRB1", |
45 | | - "CCL5", |
46 | | - "HLA-DPA1", |
47 | | - "nan", |
48 | | - "CD79A", |
49 | | - "nan", |
50 | | - "NKG7", |
51 | | - "LYZ", |
52 | | - ], |
53 | | - [ |
54 | | - "HLA-DPA1", |
55 | | - "nan", |
56 | | - "CD3D", |
57 | | - "NKG7", |
58 | | - "HLA-DRB1", |
59 | | - "AIF1", |
60 | | - "CD79B", |
61 | | - "nan", |
62 | | - "GNLY", |
63 | | - "CST3", |
64 | | - ], |
65 | | - [ |
66 | | - "nan", |
67 | | - "PSAP", |
68 | | - "CD74", |
69 | | - "CST7", |
70 | | - "CD74", |
71 | | - "PSAP", |
72 | | - "FCER1G", |
73 | | - "SNHG7", |
74 | | - "CD7", |
75 | | - "HLA-DRA", |
76 | | - ], |
77 | | - [ |
78 | | - "IL32", |
79 | | - "nan", |
80 | | - "HLA-DRB5", |
81 | | - "GZMA", |
82 | | - "HLA-DRB5", |
83 | | - "LST1", |
84 | | - "nan", |
85 | | - "nan", |
86 | | - "CTSW", |
87 | | - "HLA-DRB1", |
88 | | - ], |
89 | | - [ |
90 | | - "nan", |
91 | | - "FCER1G", |
92 | | - "HLA-DPB1", |
93 | | - "CTSW", |
94 | | - "HLA-DPB1", |
95 | | - "TYROBP", |
96 | | - "TYROBP", |
97 | | - "S100A10", |
98 | | - "GZMB", |
99 | | - "HLA-DPA1", |
100 | | - ], |
101 | | - ] |
102 | | -) |
103 | | - |
104 | | - |
105 | | -def test_filter_rank_genes_groups(): |
106 | | - adata = pbmc68k_reduced() |
107 | | - |
108 | | - # fix filter defaults |
109 | | - args = { |
110 | | - "adata": adata, |
111 | | - "key_added": "rank_genes_groups_filtered", |
112 | | - "min_in_group_fraction": 0.25, |
113 | | - "min_fold_change": 1, |
114 | | - "max_out_group_fraction": 0.5, |
115 | | - } |
116 | | - |
117 | | - rank_genes_groups( |
118 | | - adata, "bulk_labels", reference="Dendritic", method="wilcoxon", n_genes=5 |
119 | | - ) |
120 | | - filter_rank_genes_groups(**args) |
121 | | - |
122 | | - assert np.array_equal( |
123 | | - names_reference, |
124 | | - np.array(adata.uns["rank_genes_groups_filtered"]["names"].tolist()), |
125 | | - ) |
| 35 | + *("nan", "PSAP", "CD74", "CST7", "CD74"), |
| 36 | + *("PSAP", "FCER1G", "SNHG7", "CD7", "HLA-DRA"), |
| 37 | + ], |
| 38 | + [ |
| 39 | + *("IL32", "nan", "HLA-DRB5", "GZMA", "HLA-DRB5"), |
| 40 | + *("LST1", "nan", "nan", "CTSW", "HLA-DRB1"), |
| 41 | + ], |
| 42 | + [ |
| 43 | + *("nan", "FCER1G", "HLA-DPB1", "CTSW", "HLA-DPB1"), |
| 44 | + *("TYROBP", "TYROBP", "S100A10", "GZMB", "HLA-DPA1"), |
| 45 | + ], |
| 46 | +] |
126 | 47 |
|
127 | | - rank_genes_groups(adata, "bulk_labels", method="wilcoxon", n_genes=5) |
128 | | - filter_rank_genes_groups(**args) |
129 | 48 |
|
130 | | - assert np.array_equal( |
131 | | - names_no_reference, |
132 | | - np.array(adata.uns["rank_genes_groups_filtered"]["names"].tolist()), |
133 | | - ) |
| 49 | +EXPECTED = { |
| 50 | + ("Dendritic", False): np.array(NAMES_REF), |
| 51 | + ("rest", False): np.array(NAMES_NO_REF), |
| 52 | + ("rest", True): np.array(NAMES_NO_REF_COMPARE_ABS), |
| 53 | +} |
134 | 54 |
|
135 | | - rank_genes_groups(adata, "bulk_labels", method="wilcoxon", pts=True, n_genes=5) |
136 | | - filter_rank_genes_groups(**args) |
137 | 55 |
|
138 | | - assert np.array_equal( |
139 | | - names_no_reference, |
140 | | - np.array(adata.uns["rank_genes_groups_filtered"]["names"].tolist()), |
141 | | - ) |
| 56 | +@pytest.mark.parametrize( |
| 57 | + ("reference", "pts", "abs"), |
| 58 | + [ |
| 59 | + pytest.param("Dendritic", False, False, id="ref-no_pts-no_abs"), |
| 60 | + pytest.param("rest", False, False, id="rest-no_pts-no_abs"), |
| 61 | + pytest.param("rest", True, False, id="rest-pts-no_abs"), |
| 62 | + pytest.param("rest", True, True, id="rest-pts-abs"), |
| 63 | + ], |
| 64 | +) |
| 65 | +def test_filter_rank_genes_groups(reference, pts, abs): |
| 66 | + adata = pbmc68k_reduced() |
142 | 67 |
|
143 | | - # test compare_abs |
144 | 68 | rank_genes_groups( |
145 | | - adata, "bulk_labels", method="wilcoxon", pts=True, rankby_abs=True, n_genes=5 |
146 | | - ) |
147 | | - |
148 | | - filter_rank_genes_groups( |
149 | 69 | adata, |
150 | | - compare_abs=True, |
151 | | - min_in_group_fraction=-1, |
152 | | - max_out_group_fraction=1, |
153 | | - min_fold_change=3.1, |
| 70 | + "bulk_labels", |
| 71 | + reference=reference, |
| 72 | + pts=pts, |
| 73 | + method="wilcoxon", |
| 74 | + rankby_abs=abs, |
| 75 | + n_genes=5, |
154 | 76 | ) |
| 77 | + if abs: |
| 78 | + filter_rank_genes_groups( |
| 79 | + adata, |
| 80 | + compare_abs=True, |
| 81 | + min_in_group_fraction=-1, |
| 82 | + max_out_group_fraction=1, |
| 83 | + min_fold_change=3.1, |
| 84 | + ) |
| 85 | + else: |
| 86 | + filter_rank_genes_groups( |
| 87 | + adata, |
| 88 | + min_in_group_fraction=0.25, |
| 89 | + min_fold_change=1, |
| 90 | + max_out_group_fraction=0.5, |
| 91 | + ) |
155 | 92 |
|
156 | 93 | assert np.array_equal( |
157 | | - names_compare_abs, |
| 94 | + EXPECTED[reference, abs], |
158 | 95 | np.array(adata.uns["rank_genes_groups_filtered"]["names"].tolist()), |
159 | 96 | ) |
0 commit comments