diff --git a/App.tsx b/App.tsx
index d1ff75d..9364a69 100644
--- a/App.tsx
+++ b/App.tsx
@@ -6,8 +6,9 @@ import FluidDoubleBuffering from './examples/FluidDoubleBuffering';
import FluidWithAtomics from './examples/FluidWithAtomics';
import FunctionVisualizer from './examples/FunctionVisualizer';
import GameOfLife from './examples/GameOfLife';
+import StableFluids from './examples/StableFluids/StableFluids';
-const examples = ['🐠', '🚰', '🎮', '📈', '🛁', '🐥'];
+const examples = ['🐠', '🚰', '🎮', '📈', '🛁', '🐥', '🌊'] as const;
export default function App() {
const [currentExample, setCurrentExample] =
@@ -37,6 +38,8 @@ export default function App() {
) : currentExample === '🐠' ? (
+ ) : currentExample === '🌊' ? (
+
) : null}
vec2f {
let pos = vec2(
(v.x * cos(angle)) - (v.y * sin(angle)),
@@ -16,14 +16,13 @@ const rotate = tgpu['~unstable'].fn([d.vec2f, d.f32], d.vec2f).does(/* wgsl */ `
return pos;
}
-`);
+`;
const getRotationFromVelocity = tgpu['~unstable']
- .fn([d.vec2f], d.f32)
- .does(/* wgsl */ `
+ .fn([d.vec2f], d.f32)/* wgsl */ `
(velocity: vec2f) -> f32 {
return -atan2(velocity.x, velocity.y);
-}`);
+}`;
const TriangleData = d.struct({
position: d.vec2f,
@@ -46,22 +45,21 @@ const mainVert = tgpu['~unstable']
.vertexFn({
in: { v: d.vec2f, center: d.vec2f, velocity: d.vec2f },
out: VertexOutput,
- })
- .does(/* wgsl */ `(input: VertexInput) -> VertexOutput {
-let angle = getRotationFromVelocity(input.velocity);
-let rotated = rotate(input.v, angle);
+ })`{
+ let angle = getRotationFromVelocity(in.velocity);
+ let rotated = rotate(in.v, angle);
-let pos = vec4(rotated + input.center, 0.0, 1.0);
+ let pos = vec4(rotated + in.center, 0.0, 1.0);
-let color = vec4(
- sin(angle + colorPalette.r) * 0.45 + 0.45,
- sin(angle + colorPalette.g) * 0.45 + 0.45,
- sin(angle + colorPalette.b) * 0.45 + 0.45,
- 1.0);
+ let color = vec4(
+ sin(angle + colorPalette.r) * 0.45 + 0.45,
+ sin(angle + colorPalette.g) * 0.45 + 0.45,
+ sin(angle + colorPalette.b) * 0.45 + 0.45,
+ 1.0);
-return VertexOutput(pos, color);
-}`)
- .$uses({
+ return Out(pos, color);
+ }
+`.$uses({
trianglePos,
colorPalette,
getRotationFromVelocity,
@@ -69,12 +67,9 @@ return VertexOutput(pos, color);
});
const mainFrag = tgpu['~unstable']
- .fragmentFn({ in: VertexOutput, out: d.vec4f })
- .does(/* wgsl */ `
-(input: FragmentInput) -> @location(0) vec4f {
-return input.color;
-}
-`);
+ .fragmentFn({ in: VertexOutput, out: d.vec4f })`{
+ return in.color;
+ }`;
const Params = d
.struct({
@@ -214,62 +209,61 @@ export default function () {
.computeFn({
in: { gid: d.builtin.globalInvocationId },
workgroupSize: [1],
- })
- .does(/* wgsl */ `(input: ComputeInput) {
- let index = input.gid.x;
- var instanceInfo = currentTrianglePos[index];
- var separation = vec2f();
- var alignment = vec2f();
- var cohesion = vec2f();
- var alignmentCount = 0u;
- var cohesionCount = 0u;
-
- for (var i = 0u; i < arrayLength(¤tTrianglePos); i += 1) {
- if (i == index) {
- continue;
- }
- var other = currentTrianglePos[i];
- var dist = distance(instanceInfo.position, other.position);
- if (dist < params.separationDistance) {
- separation += instanceInfo.position - other.position;
- }
- if (dist < params.alignmentDistance) {
- alignment += other.velocity;
- alignmentCount++;
- }
- if (dist < params.cohesionDistance) {
- cohesion += other.position;
- cohesionCount++;
+ })`{
+ let index = in.gid.x;
+ var instanceInfo = currentTrianglePos[index];
+ var separation = vec2f();
+ var alignment = vec2f();
+ var cohesion = vec2f();
+ var alignmentCount = 0u;
+ var cohesionCount = 0u;
+
+ for (var i = 0u; i < arrayLength(¤tTrianglePos); i += 1) {
+ if (i == index) {
+ continue;
+ }
+ var other = currentTrianglePos[i];
+ var dist = distance(instanceInfo.position, other.position);
+ if (dist < params.separationDistance) {
+ separation += instanceInfo.position - other.position;
+ }
+ if (dist < params.alignmentDistance) {
+ alignment += other.velocity;
+ alignmentCount++;
+ }
+ if (dist < params.cohesionDistance) {
+ cohesion += other.position;
+ cohesionCount++;
+ }
+ };
+ if (alignmentCount > 0u) {
+ alignment = alignment / f32(alignmentCount);
+ }
+ if (cohesionCount > 0u) {
+ cohesion = (cohesion / f32(cohesionCount)) - instanceInfo.position;
+ }
+ instanceInfo.velocity +=
+ (separation * params.separationStrength)
+ + (alignment * params.alignmentStrength)
+ + (cohesion * params.cohesionStrength);
+ instanceInfo.velocity = normalize(instanceInfo.velocity) * clamp(length(instanceInfo.velocity), 0.0, 0.01);
+
+ if (instanceInfo.position[0] > 1.0 + triangleSize) {
+ instanceInfo.position[0] = -1.0 - triangleSize;
+ }
+ if (instanceInfo.position[1] > 1.0 + triangleSize) {
+ instanceInfo.position[1] = -1.0 - triangleSize;
+ }
+ if (instanceInfo.position[0] < -1.0 - triangleSize) {
+ instanceInfo.position[0] = 1.0 + triangleSize;
+ }
+ if (instanceInfo.position[1] < -1.0 - triangleSize) {
+ instanceInfo.position[1] = 1.0 + triangleSize;
+ }
+ instanceInfo.position += instanceInfo.velocity;
+ nextTrianglePos[index] = instanceInfo;
}
- };
- if (alignmentCount > 0u) {
- alignment = alignment / f32(alignmentCount);
- }
- if (cohesionCount > 0u) {
- cohesion = (cohesion / f32(cohesionCount)) - instanceInfo.position;
- }
- instanceInfo.velocity +=
- (separation * params.separationStrength)
- + (alignment * params.alignmentStrength)
- + (cohesion * params.cohesionStrength);
- instanceInfo.velocity = normalize(instanceInfo.velocity) * clamp(length(instanceInfo.velocity), 0.0, 0.01);
-
- if (instanceInfo.position[0] > 1.0 + triangleSize) {
- instanceInfo.position[0] = -1.0 - triangleSize;
- }
- if (instanceInfo.position[1] > 1.0 + triangleSize) {
- instanceInfo.position[1] = -1.0 - triangleSize;
- }
- if (instanceInfo.position[0] < -1.0 - triangleSize) {
- instanceInfo.position[0] = 1.0 + triangleSize;
- }
- if (instanceInfo.position[1] < -1.0 - triangleSize) {
- instanceInfo.position[1] = 1.0 + triangleSize;
- }
- instanceInfo.position += instanceInfo.velocity;
- nextTrianglePos[index] = instanceInfo;
- }`)
- .$uses({ currentTrianglePos, nextTrianglePos, params, triangleSize });
+ `.$uses({ currentTrianglePos, nextTrianglePos, params, triangleSize });
const computePipeline = root['~unstable']
.withCompute(mainCompute)
diff --git a/examples/FluidDoubleBuffering.tsx b/examples/FluidDoubleBuffering.tsx
index 40a16d9..0d81545 100644
--- a/examples/FluidDoubleBuffering.tsx
+++ b/examples/FluidDoubleBuffering.tsx
@@ -9,7 +9,7 @@ const MAX_GRID_SIZE = 1024;
const randSeed = tgpu['~unstable'].privateVar(d.vec2f);
-const setupRandomSeed = tgpu['~unstable'].fn([d.vec2f]).does((coord) => {
+const setupRandomSeed = tgpu['~unstable'].fn([d.vec2f])((coord) => {
randSeed.value = coord;
});
@@ -17,7 +17,7 @@ const setupRandomSeed = tgpu['~unstable'].fn([d.vec2f]).does((coord) => {
* Yoinked from https://www.cg.tuwien.ac.at/research/publications/2023/PETER-2023-PSW/PETER-2023-PSW-.pdf
* "Particle System in WebGPU" by Benedikt Peter
*/
-const rand01 = tgpu['~unstable'].fn([], d.f32).does(() => {
+const rand01 = tgpu['~unstable'].fn([], d.f32)(() => {
const a = std.dot(randSeed.value, d.vec2f(23.14077926, 232.61690225));
const b = std.dot(randSeed.value, d.vec2f(54.47856553, 345.84153136));
randSeed.value.x = std.fract(std.cos(a) * 136.8168);
@@ -74,8 +74,7 @@ export default function () {
const obstaclesReadonly = obstaclesBuffer.as('readonly');
const isValidCoord = tgpu['~unstable']
- .fn([d.i32, d.i32], d.bool)
- .does(
+ .fn([d.i32, d.i32], d.bool)(
(x, y) =>
x < gridSizeUniform.value &&
x >= 0 &&
@@ -84,38 +83,32 @@ export default function () {
);
const coordsToIndex = tgpu['~unstable']
- .fn([d.i32, d.i32], d.i32)
- .does((x, y) => x + y * gridSizeUniform.value);
+ .fn([d.i32, d.i32], d.i32)((x, y) => x + y * gridSizeUniform.value);
const getCell = tgpu['~unstable']
- .fn([d.i32, d.i32], d.vec4f)
- .does((x, y) => inputGridSlot.value[coordsToIndex(x, y)]);
+ .fn([d.i32, d.i32], d.vec4f)((x, y) => inputGridSlot.value[coordsToIndex(x, y)]);
const setCell = tgpu['~unstable']
- .fn([d.i32, d.i32, d.vec4f])
- .does((x, y, value) => {
+ .fn([d.i32, d.i32, d.vec4f])((x, y, value) => {
const index = coordsToIndex(x, y);
outputGridSlot.value[index] = value;
});
const setVelocity = tgpu['~unstable']
- .fn([d.i32, d.i32, d.vec2f])
- .does((x, y, velocity) => {
+ .fn([d.i32, d.i32, d.vec2f])((x, y, velocity) => {
const index = coordsToIndex(x, y);
outputGridSlot.value[index].x = velocity.x;
outputGridSlot.value[index].y = velocity.y;
});
const addDensity = tgpu['~unstable']
- .fn([d.i32, d.i32, d.f32])
- .does((x, y, density) => {
+ .fn([d.i32, d.i32, d.f32])((x, y, density) => {
const index = coordsToIndex(x, y);
outputGridSlot.value[index].z = inputGridSlot.value[index].z + density;
});
const flowFromCell = tgpu['~unstable']
- .fn([d.i32, d.i32, d.i32, d.i32], d.f32)
- .does((my_x, my_y, x, y) => {
+ .fn([d.i32, d.i32, d.i32, d.i32], d.f32)((my_x, my_y, x, y) => {
if (!isValidCoord(x, y)) {
return 0;
}
@@ -146,8 +139,7 @@ export default function () {
const timeUniform = timeBuffer.as('uniform');
const isInsideObstacle = tgpu['~unstable']
- .fn([d.i32, d.i32], d.bool)
- .does((x, y) => {
+ .fn([d.i32, d.i32], d.bool)((x, y) => {
for (let obs_idx = 0; obs_idx < MAX_OBSTACLES; obs_idx += 1) {
const obs = obstaclesReadonly.value[obs_idx];
@@ -189,53 +181,52 @@ export default function () {
});
const computeVelocity = tgpu['~unstable']
- .fn([d.i32, d.i32], d.vec2f)
- .does(/* wgsl */ `(x: i32, y: i32) -> vec2f {
- let gravity_cost = 0.5;
-
- let neighbor_offsets = array(
- vec2i( 0, 1),
- vec2i( 0, -1),
- vec2i( 1, 0),
- vec2i(-1, 0),
- );
+ .fn([d.i32, d.i32], d.vec2f)/* wgsl */ `(x: i32, y: i32) -> vec2f {
+ let gravity_cost = 0.5;
+
+ let neighbor_offsets = array(
+ vec2i( 0, 1),
+ vec2i( 0, -1),
+ vec2i( 1, 0),
+ vec2i(-1, 0),
+ );
- let cell = getCell(x, y);
- var least_cost = cell.z;
+ let cell = getCell(x, y);
+ var least_cost = cell.z;
- // Direction choices of the same cost, one is chosen
- // randomly at the end of the process.
- var dir_choices: array;
- var dir_choice_count: u32 = 1;
- dir_choices[0] = vec2f(0., 0.);
+ // Direction choices of the same cost, one is chosen
+ // randomly at the end of the process.
+ var dir_choices: array;
+ var dir_choice_count: u32 = 1;
+ dir_choices[0] = vec2f(0., 0.);
- for (var i = 0; i < 4; i++) {
- let offset = neighbor_offsets[i];
- let neighbor_density = getCell(x + offset.x, y + offset.y).z;
- let cost = neighbor_density + f32(offset.y) * gravity_cost;
- let is_valid_flow_out = isValidFlowOut(x + offset.x, y + offset.y);
+ for (var i = 0; i < 4; i++) {
+ let offset = neighbor_offsets[i];
+ let neighbor_density = getCell(x + offset.x, y + offset.y).z;
+ let cost = neighbor_density + f32(offset.y) * gravity_cost;
+ let is_valid_flow_out = isValidFlowOut(x + offset.x, y + offset.y);
- if (!is_valid_flow_out) {
- continue;
- }
+ if (!is_valid_flow_out) {
+ continue;
+ }
- if (cost == least_cost) {
- // another valid direction
- dir_choices[dir_choice_count] = vec2f(f32(offset.x), f32(offset.y));
- dir_choice_count++;
- }
- else if (cost < least_cost) {
- // new best choice
- least_cost = cost;
- dir_choices[0] = vec2f(f32(offset.x), f32(offset.y));
- dir_choice_count = 1;
- }
- }
+ if (cost == least_cost) {
+ // another valid direction
+ dir_choices[dir_choice_count] = vec2f(f32(offset.x), f32(offset.y));
+ dir_choice_count++;
+ }
+ else if (cost < least_cost) {
+ // new best choice
+ least_cost = cost;
+ dir_choices[0] = vec2f(f32(offset.x), f32(offset.y));
+ dir_choice_count = 1;
+ }
+ }
- let least_cost_dir = dir_choices[u32(rand01() * f32(dir_choice_count))];
- return least_cost_dir;
- }`)
- .$uses({ getCell, isValidFlowOut, isValidCoord, rand01 });
+ let least_cost_dir = dir_choices[u32(rand01() * f32(dir_choice_count))];
+ return least_cost_dir;
+ }
+ `.$uses({ getCell, isValidFlowOut, isValidCoord, rand01 });
const mainInitWorld = tgpu['~unstable']
.computeFn({
@@ -492,8 +483,7 @@ export default function () {
.vertexFn({
in: { idx: d.builtin.vertexIndex },
out: { pos: d.builtin.position, uv: d.vec2f },
- })
- .does(/* wgsl */ `(input: VertexInput) -> VertexOut {
+ })/* wgsl */ `{
var pos = array(
vec2(1, 1), // top-right
vec2(-1, 1), // top-left
@@ -508,11 +498,11 @@ export default function () {
vec2(0., 0.) // bottom-left
);
- var output: VertexOut;
- output.pos = vec4f(pos[input.idx].x, pos[input.idx].y, 0.0, 1.0);
- output.uv = uv[input.idx];
+ var output: Out;
+ output.pos = vec4f(pos[in.idx].x, pos[in.idx].y, 0.0, 1.0);
+ output.uv = uv[in.idx];
return output;
- }`);
+ }`;
const fragmentMain = tgpu['~unstable']
.fragmentFn({ in: { uv: d.vec2f }, out: d.vec4f })
diff --git a/examples/StableFluids/StableFluids.tsx b/examples/StableFluids/StableFluids.tsx
new file mode 100644
index 0000000..36a0c86
--- /dev/null
+++ b/examples/StableFluids/StableFluids.tsx
@@ -0,0 +1,555 @@
+import tgpu, { type TgpuRenderPipeline, type TgpuBindGroup } from 'typegpu';
+import * as d from 'typegpu/data';
+import * as k from './kernels';
+import { useWebGPU } from '../../useWebGPU';
+import { Canvas } from 'react-native-wgpu';
+import {
+ type GestureResponderEvent,
+ PixelRatio,
+ View,
+ Text,
+ Switch,
+ TouchableOpacity,
+} from 'react-native';
+import {
+ type MutableRefObject,
+ type RefObject,
+ useCallback,
+ useRef,
+ useState,
+} from 'react';
+import {
+ INK_AMOUNT,
+ WORKGROUP_SIZE_X,
+ WORKGROUP_SIZE_Y,
+ params,
+ FORCE_SCALE,
+ Params,
+ BrushParams,
+ SIMULATION_QUALITY,
+} from './params';
+import { resampleImageBitmapToTexture } from './imageResizer';
+import type { BrushInfo, DisplayMode, RenderEntries } from './types';
+import base64image from './backgroundImageBase64';
+
+class DoubleBuffer {
+ buffers: [T, T];
+ index: number;
+ constructor(bufferA: T, bufferB: T, initialIndex = 0) {
+ this.buffers = [bufferA, bufferB];
+ this.index = initialIndex;
+ }
+
+ get current(): T {
+ return this.buffers[this.index];
+ }
+ get currentIndex(): number {
+ return this.index;
+ }
+
+ swap(): void {
+ this.index ^= 1;
+ }
+ setCurrent(index: number): void {
+ this.index = index;
+ }
+}
+
+async function createScene({
+ context,
+ device,
+ presentationFormat,
+ brushInfo,
+ showField,
+ canvasSize,
+ enableBoundary,
+}: {
+ context: GPUCanvasContext;
+ device: GPUDevice;
+ presentationFormat: GPUTextureFormat;
+ brushInfo: RefObject;
+ showField: RefObject;
+ canvasSize: MutableRefObject<{ width: number; height: number } | null>;
+ enableBoundary: RefObject;
+}) {
+ const root = tgpu.initFromDevice({ device });
+
+ const width = context.canvas.width;
+ const height = context.canvas.height;
+ canvasSize.current = { width, height };
+
+ const simWidth = Math.max(1, Math.floor(width * SIMULATION_QUALITY));
+ const simHeight = Math.max(1, Math.floor(height * SIMULATION_QUALITY));
+
+ const dispatchX = Math.ceil(simWidth / WORKGROUP_SIZE_X);
+ const dispatchY = Math.ceil(simHeight / WORKGROUP_SIZE_Y);
+
+ const simParamBuffer = root
+ .createBuffer(Params, {
+ dt: params.dt,
+ viscosity: params.viscosity,
+ enableBoundary: params.enableBoundary ? 1 : 0,
+ })
+ .$usage('uniform');
+
+ const brushParamBuffer = root
+ .createBuffer(BrushParams, {
+ pos: d.vec2i(0, 0),
+ delta: d.vec2f(0, 0),
+ radius: simWidth * 0.1,
+ forceScale: FORCE_SCALE,
+ inkAmount: INK_AMOUNT,
+ })
+ .$usage('uniform');
+
+ function createField(name: string) {
+ return root['~unstable']
+ .createTexture({ size: [simWidth, simHeight], format: 'rgba16float' })
+ .$usage('storage', 'sampled')
+ .$name(name);
+ }
+
+ const plumsResponse = await fetch(base64image);
+ const plumsImage = await createImageBitmap(await plumsResponse.blob());
+ const resized = await resampleImageBitmapToTexture(
+ root,
+ plumsImage,
+ width,
+ height,
+ );
+
+ const backgroundTexture = root['~unstable']
+ .createTexture({ size: [width, height], format: 'rgba8unorm' })
+ .$usage('sampled', 'render')
+ .$name('background');
+
+ const encoder = device.createCommandEncoder();
+ encoder.copyTextureToTexture(
+ { texture: root.unwrap(resized) },
+ { texture: root.unwrap(backgroundTexture) },
+ [width, height],
+ );
+ device.queue.submit([encoder.finish()]);
+
+ const velTex = [createField('velocity0'), createField('velocity1')];
+ const inkTex = [createField('density0'), createField('density1')];
+ const pressureTex = [createField('pressure0'), createField('pressure1')];
+ const newInkTex = createField('addedInk');
+ const forceTex = createField('force');
+ const divergenceTex = createField('divergence');
+
+ const linSampler = tgpu['~unstable'].sampler({
+ magFilter: 'linear',
+ minFilter: 'linear',
+ addressModeU: 'clamp-to-edge',
+ addressModeV: 'clamp-to-edge',
+ });
+
+ const brushPipeline = root['~unstable']
+ .withCompute(k.brushFn)
+ .createPipeline();
+ const addForcePipeline = root['~unstable']
+ .withCompute(k.addForcesFn)
+ .createPipeline();
+ const advectPipeline = root['~unstable']
+ .withCompute(k.advectFn)
+ .createPipeline();
+ const diffusionPipeline = root['~unstable']
+ .withCompute(k.diffusionFn)
+ .createPipeline();
+ const divergencePipeline = root['~unstable']
+ .withCompute(k.divergenceFn)
+ .createPipeline();
+ const pressurePipeline = root['~unstable']
+ .withCompute(k.pressureFn)
+ .createPipeline();
+ const projectPipeline = root['~unstable']
+ .withCompute(k.projectFn)
+ .createPipeline();
+ const advectInkPipeline = root['~unstable']
+ .withCompute(k.advectScalarFn)
+ .createPipeline();
+ const addInkPipeline = root['~unstable']
+ .withCompute(k.addInkFn)
+ .createPipeline();
+
+ // Rendering
+ const velBuffer = new DoubleBuffer(velTex[0], velTex[1]);
+ const inkBuffer = new DoubleBuffer(inkTex[0], inkTex[1]);
+ const pressureBuffer = new DoubleBuffer(pressureTex[0], pressureTex[1]);
+
+ const renderPipelineImage = root['~unstable']
+ .withVertex(k.renderFn, k.renderFn.shell.attributes)
+ .withFragment(k.fragmentImageFn, { format: presentationFormat })
+ .createPipeline();
+ const renderPipelineInk = root['~unstable']
+ .withVertex(k.renderFn, k.renderFn.shell.attributes)
+ .withFragment(k.fragmentInkFn, { format: presentationFormat })
+ .createPipeline();
+ const renderPipelineVel = root['~unstable']
+ .withVertex(k.renderFn, k.renderFn.shell.attributes)
+ .withFragment(k.fragmentVelFn, { format: presentationFormat })
+ .createPipeline();
+
+ context.configure({
+ device,
+ format: presentationFormat,
+ alphaMode: 'premultiplied',
+ });
+
+ const brushBindGroup = root.createBindGroup(k.brushLayout, {
+ brushParams: brushParamBuffer,
+ forceDst: forceTex.createView('writeonly'),
+ inkDst: newInkTex.createView('writeonly'),
+ });
+
+ const addInkBindGroups = [0, 1].map((i) =>
+ root.createBindGroup(k.addInkLayout, {
+ src: inkTex[i].createView('sampled'),
+ add: newInkTex.createView('sampled'),
+ dst: inkTex[1 - i].createView('writeonly'),
+ }),
+ );
+
+ const addForceBindGroups = [0, 1].map((i) =>
+ root.createBindGroup(k.addForcesLayout, {
+ src: velTex[i].createView('sampled'),
+ force: forceTex.createView('sampled'),
+ dst: velTex[1 - i].createView('writeonly'),
+ simParams: simParamBuffer,
+ }),
+ );
+
+ const advectBindGroups = [0, 1].map((i) =>
+ root.createBindGroup(k.advectLayout, {
+ src: velTex[1 - i].createView('sampled'),
+ dst: velTex[i].createView('writeonly'),
+ simParams: simParamBuffer,
+ linSampler,
+ }),
+ );
+
+ const diffusionBindGroups = [0, 1].map((i) =>
+ root.createBindGroup(k.diffusionLayout, {
+ in: velTex[i].createView('sampled'),
+ out: velTex[1 - i].createView('writeonly'),
+ simParams: simParamBuffer,
+ }),
+ );
+
+ const divergenceBindGroups = [0, 1].map((i) =>
+ root.createBindGroup(k.divergenceLayout, {
+ vel: velTex[i].createView('sampled'),
+ div: divergenceTex.createView('writeonly'),
+ }),
+ );
+
+ const pressureBindGroups = [0, 1].map((i) =>
+ root.createBindGroup(k.pressureLayout, {
+ x: pressureTex[i].createView('sampled'),
+ b: divergenceTex.createView('sampled'),
+ out: pressureTex[1 - i].createView('writeonly'),
+ }),
+ );
+
+ const projectBindGroups = [0, 1].map((velIdx) =>
+ [0, 1].map((pIdx) =>
+ root.createBindGroup(k.projectLayout, {
+ vel: velTex[velIdx].createView('sampled'),
+ p: pressureTex[pIdx].createView('sampled'),
+ out: velTex[1 - velIdx].createView('writeonly'),
+ }),
+ ),
+ );
+
+ const advectInkBindGroups = [0, 1].map((velIdx) =>
+ [0, 1].map((inkIdx) =>
+ root.createBindGroup(k.advectInkLayout, {
+ vel: velTex[velIdx].createView('sampled'),
+ src: inkTex[inkIdx].createView('sampled'),
+ dst: inkTex[1 - inkIdx].createView('writeonly'),
+ simParams: simParamBuffer,
+ linSampler,
+ }),
+ ),
+ );
+
+ const renderBindGroups = {
+ image: [0, 1].map((idx) =>
+ root.createBindGroup(k.renderLayout, {
+ result: inkTex[idx].createView('sampled'),
+ background: backgroundTexture.createView('sampled'),
+ linSampler,
+ }),
+ ),
+ ink: [0, 1].map((idx) =>
+ root.createBindGroup(k.renderLayout, {
+ result: inkTex[idx].createView('sampled'),
+ background: backgroundTexture.createView('sampled'),
+ linSampler,
+ }),
+ ),
+ velocity: [0, 1].map((idx) =>
+ root.createBindGroup(k.renderLayout, {
+ result: velTex[idx].createView('sampled'),
+ background: backgroundTexture.createView('sampled'),
+ linSampler,
+ }),
+ ),
+ };
+
+ function loop() {
+ simParamBuffer.write({
+ dt: params.dt,
+ viscosity: params.viscosity,
+ enableBoundary: enableBoundary.current ? 1 : 0,
+ });
+
+ if (brushInfo.current?.isDown) {
+ brushParamBuffer.write({
+ pos: d.vec2i(...brushInfo.current.pos),
+ delta: d.vec2f(...brushInfo.current.delta),
+ radius: simWidth * 0.1,
+ forceScale: FORCE_SCALE,
+ inkAmount: INK_AMOUNT,
+ });
+
+ brushPipeline
+ .with(k.brushLayout, brushBindGroup)
+ .dispatchWorkgroups(dispatchX, dispatchY);
+
+ addInkPipeline
+ .with(k.addInkLayout, addInkBindGroups[inkBuffer.currentIndex])
+ .dispatchWorkgroups(dispatchX, dispatchY);
+ inkBuffer.swap();
+
+ addForcePipeline
+ .with(k.addForcesLayout, addForceBindGroups[velBuffer.currentIndex])
+ .dispatchWorkgroups(dispatchX, dispatchY);
+ } else {
+ velBuffer.setCurrent(0);
+ }
+
+ advectPipeline
+ .with(k.advectLayout, advectBindGroups[velBuffer.currentIndex])
+ .dispatchWorkgroups(dispatchX, dispatchY);
+
+ for (let i = 0; i < params.jacobiIter; i++) {
+ diffusionPipeline
+ .with(k.diffusionLayout, diffusionBindGroups[velBuffer.currentIndex])
+ .dispatchWorkgroups(dispatchX, dispatchY);
+ velBuffer.swap();
+ }
+
+ divergencePipeline
+ .with(k.divergenceLayout, divergenceBindGroups[velBuffer.currentIndex])
+ .dispatchWorkgroups(dispatchX, dispatchY);
+
+ pressureBuffer.setCurrent(0);
+ for (let i = 0; i < params.jacobiIter; i++) {
+ pressurePipeline
+ .with(k.pressureLayout, pressureBindGroups[pressureBuffer.currentIndex])
+ .dispatchWorkgroups(dispatchX, dispatchY);
+ pressureBuffer.swap();
+ }
+
+ projectPipeline
+ .with(
+ k.projectLayout,
+ projectBindGroups[velBuffer.currentIndex][pressureBuffer.currentIndex],
+ )
+ .dispatchWorkgroups(dispatchX, dispatchY);
+ velBuffer.swap();
+
+ advectInkPipeline
+ .with(
+ k.advectInkLayout,
+ advectInkBindGroups[velBuffer.currentIndex][inkBuffer.currentIndex],
+ )
+ .dispatchWorkgroups(dispatchX, dispatchY);
+ inkBuffer.swap();
+
+ let pipeline: TgpuRenderPipeline;
+ let renderBindGroup: TgpuBindGroup[];
+
+ if (showField.current === 'ink') {
+ pipeline = renderPipelineInk;
+ renderBindGroup = renderBindGroups.ink;
+ } else if (showField.current === 'velocity') {
+ pipeline = renderPipelineVel;
+ renderBindGroup = renderBindGroups.velocity;
+ } else {
+ pipeline = renderPipelineImage;
+ renderBindGroup = renderBindGroups.image;
+ }
+
+ pipeline
+ .withColorAttachment({
+ view: context.getCurrentTexture().createView(),
+ loadOp: 'clear',
+ storeOp: 'store',
+ })
+ .with(k.renderLayout, renderBindGroup[inkBuffer.currentIndex])
+ .draw(6);
+
+ root['~unstable'].flush();
+ }
+
+ return loop;
+}
+
+export default function () {
+ const brushInfo = useRef({
+ pos: [0, 0],
+ delta: [0, 0],
+ isDown: false,
+ });
+ const canvasSize = useRef<{ width: number; height: number } | null>(null);
+
+ const [showField, setShowField] = useState(params.showField);
+ const showFieldRef = useRef(showField);
+ showFieldRef.current = showField;
+
+ const [enableBoundary, setEnableBoundary] = useState(params.enableBoundary);
+ const enableBoundaryRef = useRef(enableBoundary);
+ enableBoundaryRef.current = enableBoundary;
+
+ const sceneFunction = useCallback(
+ async ({
+ context,
+ device,
+ presentationFormat,
+ }: {
+ context: GPUCanvasContext;
+ device: GPUDevice;
+ presentationFormat: GPUTextureFormat;
+ }) =>
+ await createScene({
+ context,
+ device,
+ presentationFormat,
+ brushInfo,
+ showField: showFieldRef,
+ canvasSize,
+ enableBoundary: enableBoundaryRef,
+ }),
+ [],
+ );
+
+ const ref = useWebGPU(sceneFunction);
+
+ const realToCanvas = useCallback((x: number, y: number): [number, number] => {
+ const size = canvasSize.current;
+ if (!size) {
+ return [0, 0];
+ }
+ const dpr = PixelRatio.get();
+
+ const gx = Math.floor(x * dpr * SIMULATION_QUALITY);
+ const gy = Math.floor((size.height - y * dpr) * SIMULATION_QUALITY);
+ const cx = Math.max(0, Math.min(size.width * SIMULATION_QUALITY - 1, gx));
+ const cy = Math.max(0, Math.min(size.height * SIMULATION_QUALITY - 1, gy));
+
+ return [cx, cy];
+ }, []);
+
+ const handleStart = useCallback(
+ (e: GestureResponderEvent) => {
+ const { locationX, locationY } = e.nativeEvent;
+ brushInfo.current = {
+ pos: realToCanvas(locationX, locationY),
+ delta: [0, 0],
+ isDown: true,
+ };
+ },
+ [realToCanvas],
+ );
+
+ const handleMove = useCallback(
+ (e: GestureResponderEvent) => {
+ if (!brushInfo.current) {
+ return;
+ }
+ const { locationX, locationY } = e.nativeEvent;
+ const [gx, gy] = realToCanvas(locationX, locationY);
+ const dx = gx - brushInfo.current.pos[0];
+ const dy = gy - brushInfo.current.pos[1];
+
+ brushInfo.current = {
+ pos: [gx, gy],
+ delta: [dx, dy],
+ isDown: true,
+ };
+ },
+ [realToCanvas],
+ );
+
+ const handleEnd = useCallback(() => {
+ brushInfo.current = {
+ pos: [0, 0],
+ delta: [0, 0],
+ isDown: false,
+ };
+ }, []);
+
+ const handleShowField = useCallback((field: DisplayMode) => {
+ setShowField(field);
+ params.showField = field;
+ }, []);
+
+ const handleBoundaryToggle = useCallback((value: boolean) => {
+ setEnableBoundary(value);
+ params.enableBoundary = value;
+ }, []);
+
+ return (
+
+
+
+
+ {(['ink', 'velocity', 'image'] as DisplayMode[]).map((field) => (
+ handleShowField(field)}
+ >
+ {field}
+
+ ))}
+
+
+ Boundary
+
+
+
+
+ );
+}
diff --git a/examples/StableFluids/backgroundImageBase64.ts b/examples/StableFluids/backgroundImageBase64.ts
new file mode 100644
index 0000000..1cee2e6
--- /dev/null
+++ b/examples/StableFluids/backgroundImageBase64.ts
@@ -0,0 +1,3 @@
+const imageUri =
+ '';
+export default imageUri;
diff --git a/examples/StableFluids/imageResizer.ts b/examples/StableFluids/imageResizer.ts
new file mode 100644
index 0000000..1bf7005
--- /dev/null
+++ b/examples/StableFluids/imageResizer.ts
@@ -0,0 +1,73 @@
+import * as std from 'typegpu/std';
+import * as d from 'typegpu/data';
+import tgpu, { type TgpuRoot } from 'typegpu';
+import * as k from './kernels';
+
+export const resampleImageLayout = tgpu.bindGroupLayout({
+ src: { texture: 'float' },
+ linSampler: { sampler: 'filtering' },
+});
+
+export const fragmentResampleFn = tgpu['~unstable'].fragmentFn({
+ in: { uv: d.vec2f },
+ out: d.vec4f,
+})((inp) => {
+ const color = std.textureSample(
+ resampleImageLayout.$.src,
+ resampleImageLayout.$.linSampler,
+ inp.uv,
+ );
+ return d.vec4f(color.xyz, d.f32(1.0));
+});
+
+export async function resampleImageBitmapToTexture(
+ root: TgpuRoot,
+ imageBitmap: ImageBitmap,
+ width: number,
+ height: number,
+) {
+ const srcDims = [imageBitmap.width, imageBitmap.height] as const;
+ const srcTexture = root['~unstable']
+ .createTexture({ size: srcDims, format: 'rgba8unorm' })
+ .$usage('sampled')
+ .$name('resampleSrc');
+ root.device.queue.copyExternalImageToTexture(
+ { source: imageBitmap },
+ { texture: root.unwrap(srcTexture) },
+ srcDims,
+ );
+
+ const dstTexture = root['~unstable']
+ .createTexture({ size: [width, height], format: 'rgba8unorm' })
+ .$usage('render', 'sampled')
+ .$name('resampled');
+
+ const sampler = tgpu['~unstable'].sampler({
+ magFilter: 'linear',
+ minFilter: 'linear',
+ addressModeU: 'clamp-to-edge',
+ addressModeV: 'clamp-to-edge',
+ });
+
+ const pipeline = root['~unstable']
+ .withVertex(k.renderFn, k.renderFn.shell.attributes)
+ .withFragment(fragmentResampleFn, { format: 'rgba8unorm' })
+ .createPipeline();
+
+ const bindGroup = root.createBindGroup(resampleImageLayout, {
+ src: srcTexture.createView('sampled'),
+ linSampler: sampler,
+ });
+
+ pipeline
+ .withColorAttachment({
+ view: dstTexture,
+ loadOp: 'clear',
+ storeOp: 'store',
+ })
+ .with(resampleImageLayout, bindGroup)
+ .draw(6);
+ root['~unstable'].flush();
+
+ return dstTexture;
+}
diff --git a/examples/StableFluids/kernels.ts b/examples/StableFluids/kernels.ts
new file mode 100644
index 0000000..c62ea6f
--- /dev/null
+++ b/examples/StableFluids/kernels.ts
@@ -0,0 +1,393 @@
+import tgpu from 'typegpu';
+import * as d from 'typegpu/data';
+import * as std from 'typegpu/std';
+import {
+ BrushParams,
+ DISPLACEMENT_SCALE,
+ Params,
+ WORKGROUP_SIZE_X,
+ WORKGROUP_SIZE_Y,
+} from './params';
+
+const getNeighbors = tgpu['~unstable'].fn(
+ { coords: d.vec2i, bounds: d.vec2i },
+ d.arrayOf(d.vec2i, 4),
+)(({ coords, bounds }) => {
+ const res = [d.vec2i(-1, 0), d.vec2i(0, -1), d.vec2i(1, 0), d.vec2i(0, 1)];
+ for (let i = 0; i < 4; i++) {
+ res[i] = std.clamp(
+ std.add(coords, res[i]),
+ d.vec2i(0),
+ std.sub(bounds, d.vec2i(1)),
+ );
+ }
+ return res;
+});
+
+export const brushLayout = tgpu.bindGroupLayout({
+ brushParams: { uniform: BrushParams },
+ forceDst: { storageTexture: 'rgba16float', access: 'writeonly' },
+ inkDst: { storageTexture: 'rgba16float', access: 'writeonly' },
+});
+
+export const brushFn = tgpu['~unstable'].computeFn({
+ workgroupSize: [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y],
+ in: { gid: d.builtin.globalInvocationId },
+})((input) => {
+ const coords = input.gid.xy;
+ const params = brushLayout.$.brushParams;
+
+ let force = d.vec2f(0.0);
+ let ink = d.f32(0.0);
+
+ const dx = d.f32(coords.x) - d.f32(params.pos.x);
+ const dy = d.f32(coords.y) - d.f32(params.pos.y);
+ const distSq = dx * dx + dy * dy;
+ const radiusSq = params.radius * params.radius;
+
+ if (distSq < radiusSq) {
+ const weight = std.max(0.0, 1.0 - distSq / radiusSq);
+ force = std.mul(params.forceScale * weight, params.delta);
+ ink = params.inkAmount * weight;
+ }
+
+ std.textureStore(brushLayout.$.forceDst, coords, d.vec4f(force, 0.0, 1.0));
+ std.textureStore(brushLayout.$.inkDst, coords, d.vec4f(ink, 0.0, 0.0, 1.0));
+});
+
+export const addForcesLayout = tgpu.bindGroupLayout({
+ src: { texture: 'float' },
+ dst: { storageTexture: 'rgba16float', access: 'writeonly' },
+ force: { texture: 'float' },
+ simParams: { uniform: Params },
+});
+
+export const addForcesFn = tgpu['~unstable'].computeFn({
+ workgroupSize: [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y],
+ in: { gid: d.builtin.globalInvocationId },
+})((input) => {
+ const coords = input.gid.xy;
+ const u = std.textureLoad(addForcesLayout.$.src, coords, 0).xy;
+ const f = std.textureLoad(addForcesLayout.$.force, coords, 0).xy;
+ const dt = addForcesLayout.$.simParams.dt;
+ const u2 = std.add(u, std.mul(dt, f));
+ std.textureStore(addForcesLayout.$.dst, coords, d.vec4f(u2, 0, 1));
+});
+
+export const advectLayout = tgpu.bindGroupLayout({
+ src: { texture: 'float' },
+ dst: { storageTexture: 'rgba16float', access: 'writeonly' },
+ simParams: { uniform: Params },
+ linSampler: { sampler: 'filtering' },
+});
+
+export const advectFn = tgpu['~unstable'].computeFn({
+ workgroupSize: [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y],
+ in: { gid: d.builtin.globalInvocationId },
+})((input) => {
+ const textureDimensions = std.textureDimensions(advectLayout.$.src);
+ const coords = input.gid.xy;
+ const oldVel = std.textureLoad(advectLayout.$.src, coords, 0);
+ const dt = advectLayout.$.simParams.dt;
+ const oldCoords = std.sub(d.vec2f(coords), std.mul(dt, oldVel.xy));
+ const oldCoordsClamped = std.clamp(
+ oldCoords,
+ d.vec2f(-0.5),
+ d.vec2f(std.sub(d.vec2f(textureDimensions.xy), d.vec2f(0.5))),
+ );
+ const oldCoordsNormalized = std.div(
+ std.add(oldCoordsClamped, d.vec2f(0.5)),
+ d.vec2f(textureDimensions.xy),
+ );
+
+ const velAtOldCoords = std.textureSampleLevel(
+ advectLayout.$.src,
+ advectLayout.$.linSampler,
+ oldCoordsNormalized,
+ 0,
+ );
+
+ const isBorder = std.or(
+ std.lt(coords, d.vec2u(1)),
+ std.ge(coords, std.sub(d.vec2u(textureDimensions.xy), d.vec2u(1))),
+ );
+
+ const finalVel = std.select(
+ velAtOldCoords,
+ d.vec4f(0, 0, 0, 1),
+ std.any(isBorder) && advectLayout.$.simParams.enableBoundary === 1,
+ );
+
+ std.textureStore(advectLayout.$.dst, coords, finalVel);
+});
+
+export const diffusionLayout = tgpu.bindGroupLayout({
+ in: { texture: 'float' },
+ out: { storageTexture: 'rgba16float', access: 'writeonly' },
+ simParams: { uniform: Params },
+});
+
+export const diffusionFn = tgpu['~unstable'].computeFn({
+ workgroupSize: [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y],
+ in: { gid: d.builtin.globalInvocationId },
+})((input) => {
+ const coords = d.vec2i(input.gid.xy);
+ const textureDimensions = d.vec2i(
+ std.textureDimensions(diffusionLayout.$.in),
+ );
+ const inputValue = std.textureLoad(diffusionLayout.$.in, coords, 0);
+
+ const neighbors = getNeighbors({ coords, bounds: textureDimensions });
+
+ const left = std.textureLoad(diffusionLayout.$.in, neighbors[0], 0);
+ const up = std.textureLoad(diffusionLayout.$.in, neighbors[1], 0);
+ const right = std.textureLoad(diffusionLayout.$.in, neighbors[2], 0);
+ const down = std.textureLoad(diffusionLayout.$.in, neighbors[3], 0);
+
+ const dt = diffusionLayout.$.simParams.dt;
+ const viscosity = diffusionLayout.$.simParams.viscosity;
+
+ const alpha = viscosity * dt;
+ const beta = 1.0 / (4.0 + alpha);
+ const newValue = std.mul(
+ d.vec4f(beta),
+ std.add(
+ std.add(std.add(left, right), std.add(up, down)),
+ std.mul(d.f32(alpha), inputValue),
+ ),
+ );
+
+ std.textureStore(diffusionLayout.$.out, coords, newValue);
+});
+
+export const divergenceLayout = tgpu.bindGroupLayout({
+ vel: { texture: 'float' },
+ div: { storageTexture: 'rgba16float', access: 'writeonly' },
+});
+
+export const divergenceFn = tgpu['~unstable'].computeFn({
+ workgroupSize: [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y],
+ in: { gid: d.builtin.globalInvocationId },
+})((input) => {
+ const coords = d.vec2i(input.gid.xy);
+ const textureDimensions = d.vec2i(
+ std.textureDimensions(divergenceLayout.$.vel),
+ );
+
+ const neighbors = getNeighbors({ coords, bounds: textureDimensions });
+
+ const left = std.textureLoad(divergenceLayout.$.vel, neighbors[0], 0);
+ const up = std.textureLoad(divergenceLayout.$.vel, neighbors[1], 0);
+ const right = std.textureLoad(divergenceLayout.$.vel, neighbors[2], 0);
+ const down = std.textureLoad(divergenceLayout.$.vel, neighbors[3], 0);
+
+ const div = d.f32(0.5) * (right.x - left.x + (down.y - up.y));
+ std.textureStore(divergenceLayout.$.div, coords, d.vec4f(div, 0, 0, 1));
+});
+
+export const pressureLayout = tgpu.bindGroupLayout({
+ x: { texture: 'float' },
+ b: { texture: 'float' },
+ out: { storageTexture: 'rgba16float', access: 'writeonly' },
+});
+
+export const pressureFn = tgpu['~unstable'].computeFn({
+ workgroupSize: [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y],
+ in: { gid: d.builtin.globalInvocationId },
+})((input) => {
+ const coords = d.vec2i(input.gid.xy);
+ const textureDimensions = d.vec2i(std.textureDimensions(pressureLayout.$.x));
+
+ const neighbors = getNeighbors({ coords, bounds: textureDimensions });
+
+ const left = std.textureLoad(pressureLayout.$.x, neighbors[0], 0);
+ const up = std.textureLoad(pressureLayout.$.x, neighbors[1], 0);
+ const right = std.textureLoad(pressureLayout.$.x, neighbors[2], 0);
+ const down = std.textureLoad(pressureLayout.$.x, neighbors[3], 0);
+
+ const div = std.textureLoad(pressureLayout.$.b, coords, 0).x;
+ const newP = d.f32(0.25) * (left.x + right.x + up.x + down.x - div);
+ std.textureStore(pressureLayout.$.out, coords, d.vec4f(newP, 0, 0, 1));
+});
+
+export const projectLayout = tgpu.bindGroupLayout({
+ vel: { texture: 'float' },
+ p: { texture: 'float' },
+ out: { storageTexture: 'rgba16float', access: 'writeonly' },
+});
+
+export const projectFn = tgpu['~unstable'].computeFn({
+ workgroupSize: [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y],
+ in: { gid: d.builtin.globalInvocationId },
+})((input) => {
+ const coords = d.vec2i(input.gid.xy);
+ const textureDimensions = d.vec2i(std.textureDimensions(projectLayout.$.vel));
+ const vel = std.textureLoad(projectLayout.$.vel, coords, 0);
+
+ const neighbors = getNeighbors({ coords, bounds: textureDimensions });
+
+ const left = std.textureLoad(projectLayout.$.p, neighbors[0], 0);
+ const up = std.textureLoad(projectLayout.$.p, neighbors[1], 0);
+ const right = std.textureLoad(projectLayout.$.p, neighbors[2], 0);
+ const down = std.textureLoad(projectLayout.$.p, neighbors[3], 0);
+
+ const grad = d.vec2f(0.5 * (right.x - left.x), 0.5 * (down.x - up.x));
+ const newVel = std.sub(vel.xy, grad);
+ std.textureStore(projectLayout.$.out, coords, d.vec4f(newVel, 0, 1));
+});
+
+export const advectInkLayout = tgpu.bindGroupLayout({
+ vel: { texture: 'float' },
+ src: { texture: 'float' },
+ dst: { storageTexture: 'rgba16float', access: 'writeonly' },
+ simParams: { uniform: Params },
+ linSampler: { sampler: 'filtering' },
+});
+
+export const advectScalarFn = tgpu['~unstable'].computeFn({
+ workgroupSize: [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y],
+ in: { gid: d.builtin.globalInvocationId },
+})((input) => {
+ const dims = std.textureDimensions(advectInkLayout.$.src);
+ const coords = input.gid.xy;
+
+ const vel = std.textureLoad(advectInkLayout.$.vel, coords, 0).xy;
+ const dt = advectInkLayout.$.simParams.dt;
+ const oldCoords = std.sub(d.vec2f(coords), std.mul(dt, vel));
+ const clamped = std.clamp(
+ oldCoords,
+ d.vec2f(-0.5),
+ std.sub(d.vec2f(dims.xy), d.vec2f(0.5)),
+ );
+ const uv = std.div(std.add(clamped, d.vec2f(0.5)), d.vec2f(dims.xy));
+
+ const ink = std.textureSampleLevel(
+ advectInkLayout.$.src,
+ advectInkLayout.$.linSampler,
+ uv,
+ 0,
+ );
+ std.textureStore(advectInkLayout.$.dst, coords, ink);
+});
+
+export const addInkLayout = tgpu.bindGroupLayout({
+ src: { texture: 'float' },
+ dst: { storageTexture: 'rgba16float', access: 'writeonly' },
+ add: { texture: 'float' },
+});
+
+export const addInkFn = tgpu['~unstable'].computeFn({
+ workgroupSize: [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y],
+ in: { gid: d.builtin.globalInvocationId },
+})((input) => {
+ const c = input.gid.xy;
+ const a = std.textureLoad(addInkLayout.$.add, c, 0).x;
+ const s = std.textureLoad(addInkLayout.$.src, c, 0).x;
+ std.textureStore(addInkLayout.$.dst, c, d.vec4f(a + s, 0, 0, 1));
+});
+
+export const renderLayout = tgpu.bindGroupLayout({
+ result: { texture: 'float' },
+ background: { texture: 'float' },
+ linSampler: { sampler: 'filtering' },
+});
+
+export const renderFn = tgpu['~unstable'].vertexFn({
+ in: { idx: d.builtin.vertexIndex },
+ out: { pos: d.builtin.position, uv: d.vec2f },
+})((i) => {
+ const verts = [
+ d.vec4f(-1, -1, 0, 1),
+ d.vec4f(1, -1, 0, 1),
+ d.vec4f(-1, 1, 0, 1),
+ d.vec4f(1, -1, 0, 1),
+ d.vec4f(1, 1, 0, 1),
+ d.vec4f(-1, 1, 0, 1),
+ ];
+ const uvs = [
+ d.vec2f(0, 0),
+ d.vec2f(1, 0),
+ d.vec2f(0, 1),
+ d.vec2f(1, 0),
+ d.vec2f(1, 1),
+ d.vec2f(0, 1),
+ ];
+ return { pos: verts[i.idx], uv: uvs[i.idx] };
+});
+
+export const fragmentInkFn = tgpu['~unstable'].fragmentFn({
+ in: { uv: d.vec2f },
+ out: d.vec4f,
+})((inp) => {
+ const dens = std.textureSample(
+ renderLayout.$.result,
+ renderLayout.$.linSampler,
+ inp.uv,
+ ).x;
+ return d.vec4f(dens, dens * 0.8, dens * 0.5, 1);
+});
+
+export const fragmentVelFn = tgpu['~unstable'].fragmentFn({
+ in: { uv: d.vec2f },
+ out: d.vec4f,
+})((inp) => {
+ const f = std.textureSample(
+ renderLayout.$.result,
+ renderLayout.$.linSampler,
+ inp.uv,
+ ).xy;
+ const mag = std.length(f);
+ const col = d.vec4f(
+ (f.x + 1.0) * 0.5, // x->r
+ (f.y + 1.0) * 0.5, // y->g
+ mag * 0.4,
+ d.f32(1.0),
+ );
+ return col;
+});
+
+export const fragmentImageFn = tgpu['~unstable'].fragmentFn({
+ in: { uv: d.vec2f },
+ out: d.vec4f,
+})((inp) => {
+ const EPS = DISPLACEMENT_SCALE;
+
+ const left = std.textureSample(
+ renderLayout.$.result,
+ renderLayout.$.linSampler,
+ d.vec2f(inp.uv.x - EPS, inp.uv.y),
+ ).x;
+ const right = std.textureSample(
+ renderLayout.$.result,
+ renderLayout.$.linSampler,
+ d.vec2f(inp.uv.x + EPS, inp.uv.y),
+ ).x;
+ const up = std.textureSample(
+ renderLayout.$.result,
+ renderLayout.$.linSampler,
+ d.vec2f(inp.uv.x, inp.uv.y + EPS),
+ ).x;
+ const down = std.textureSample(
+ renderLayout.$.result,
+ renderLayout.$.linSampler,
+ d.vec2f(inp.uv.x, inp.uv.y - EPS),
+ ).x;
+
+ const dx = right - left;
+ const dy = up - down;
+
+ const strength = 0.8;
+ const displacement = d.vec2f(dx, dy);
+ const offsetUV = std.add(
+ inp.uv,
+ std.mul(displacement, d.vec2f(strength, -strength)),
+ );
+
+ const color = std.textureSample(
+ renderLayout.$.background,
+ renderLayout.$.linSampler,
+ d.vec2f(offsetUV.x, offsetUV.y),
+ );
+
+ return d.vec4f(color.xyz, 1.0);
+});
diff --git a/examples/StableFluids/params.ts b/examples/StableFluids/params.ts
new file mode 100644
index 0000000..22ece24
--- /dev/null
+++ b/examples/StableFluids/params.ts
@@ -0,0 +1,30 @@
+import * as d from 'typegpu/data';
+import type { SimParams } from './types.ts';
+
+export const [WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y] = [16, 16];
+export const FORCE_SCALE = 0.6;
+export const INK_AMOUNT = 0.02;
+export const SIMULATION_QUALITY = 0.2;
+export const DISPLACEMENT_SCALE = 0.005;
+
+export const params: SimParams = {
+ dt: 0.6,
+ viscosity: 0.00001,
+ jacobiIter: 10,
+ showField: 'ink',
+ enableBoundary: true,
+};
+
+export const Params = d.struct({
+ dt: d.f32,
+ viscosity: d.f32,
+ enableBoundary: d.u32,
+});
+
+export const BrushParams = d.struct({
+ pos: d.vec2i,
+ delta: d.vec2f,
+ radius: d.f32,
+ forceScale: d.f32,
+ inkAmount: d.f32,
+});
diff --git a/examples/StableFluids/types.ts b/examples/StableFluids/types.ts
new file mode 100644
index 0000000..c8b3593
--- /dev/null
+++ b/examples/StableFluids/types.ts
@@ -0,0 +1,18 @@
+export type DisplayMode = 'ink' | 'velocity' | 'image';
+export type BrushInfo = {
+ pos: [number, number];
+ delta: [number, number];
+ isDown: boolean;
+};
+export type RenderEntries = {
+ result: { texture: 'float' };
+ background: { texture: 'float' };
+ linSampler: { sampler: 'filtering' };
+};
+export type SimParams = {
+ dt: number;
+ viscosity: number;
+ jacobiIter: number;
+ showField: DisplayMode;
+ enableBoundary: boolean;
+};
diff --git a/package.json b/package.json
index a2f6d68..a04eeb1 100644
--- a/package.json
+++ b/package.json
@@ -9,13 +9,13 @@
"web": "expo start --web"
},
"dependencies": {
- "@typegpu/noise": "^0.0.3",
+ "@typegpu/noise": "^0.0.6",
"expo": "~52.0.37",
"react": "18.3.1",
- "react-native": "0.76.7",
+ "react-native": "0.76.9",
"react-native-wgpu": "^0.1.23",
- "typegpu": "^0.5.1",
- "unplugin-typegpu": "0.1.0-alpha.5",
+ "typegpu": "https://pkg.pr.new/software-mansion/TypeGPU/typegpu@c09c37e223a7342038fbfcd8d8add5d8ed013858",
+ "unplugin-typegpu": "0.1.0",
"wgpu-matrix": "^3.3.0",
"@loaders.gl/core": "^4.3.3",
"@loaders.gl/obj": "^4.3.3"
diff --git a/pnpm-lock.yaml b/pnpm-lock.yaml
index 3f56fcd..fe578bc 100644
--- a/pnpm-lock.yaml
+++ b/pnpm-lock.yaml
@@ -15,26 +15,26 @@ importers:
specifier: ^4.3.3
version: 4.3.3(@loaders.gl/core@4.3.3)
'@typegpu/noise':
- specifier: ^0.0.3
- version: 0.0.3(typegpu@0.5.1)
+ specifier: ^0.0.6
+ version: 0.0.6(typegpu@https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c)
expo:
specifier: ~52.0.37
- version: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
+ version: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
react:
specifier: 18.3.1
version: 18.3.1
react-native:
- specifier: 0.76.7
- version: 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
+ specifier: 0.76.9
+ version: 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
react-native-wgpu:
specifier: ^0.1.23
- version: 0.1.23(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
+ version: 0.1.23(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
typegpu:
- specifier: ^0.5.1
- version: 0.5.1
+ specifier: https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c
+ version: https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c
unplugin-typegpu:
- specifier: 0.1.0-alpha.5
- version: 0.1.0-alpha.5
+ specifier: 0.1.0
+ version: 0.1.0(typegpu@https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c)
wgpu-matrix:
specifier: ^3.3.0
version: 3.3.0
@@ -768,8 +768,8 @@ packages:
resolution: {integrity: sha512-aA63XwOkcl4xxQa3HjPMqOP6LiK0ZDv3mUPYEFXkpHbaFjtGggE1A61FjFzJnB+p7/oy2gA8E+rcBNl/zC1tMg==}
engines: {node: '>=6.9.0'}
- '@babel/standalone@7.26.9':
- resolution: {integrity: sha512-UTeQKy0kzJwWRe55kT1uK4G9H6D0lS6G4207hCU/bDaOhA5t2aC0qHN6GmID0Axv3OFLNXm27NdqcWp+BXcGtA==}
+ '@babel/standalone@7.27.0':
+ resolution: {integrity: sha512-UxFDpi+BuSz6Q1X73P3ZSM1CB7Nbbqys+7COi/tdouRuaqRsJ6GAzUyxTswbqItHSItVY3frQdd+paBHHGEk9g==}
engines: {node: '>=6.9.0'}
'@babel/template@7.26.9':
@@ -1023,53 +1023,77 @@ packages:
'@probe.gl/stats@4.1.0':
resolution: {integrity: sha512-EI413MkWKBDVNIfLdqbeNSJTs7ToBz/KVGkwi3D+dQrSIkRI2IYbWGAU3xX+D6+CI4ls8ehxMhNpUVMaZggDvQ==}
- '@react-native/assets-registry@0.76.7':
- resolution: {integrity: sha512-o79whsqL5fbPTUQO9w1FptRd4cw1TaeOrXtQSLQeDrMVAenw/wmsjyPK10VKtvqxa1KNMtWEyfgxcM8CVZVFmg==}
+ '@react-native/assets-registry@0.76.9':
+ resolution: {integrity: sha512-pN0Ws5xsjWOZ8P37efh0jqHHQmq+oNGKT4AyAoKRpxBDDDmlAmpaYjer9Qz7PpDKF+IUyRjF/+rBsM50a8JcUg==}
engines: {node: '>=18'}
'@react-native/babel-plugin-codegen@0.76.7':
resolution: {integrity: sha512-+8H4DXJREM4l/pwLF/wSVMRzVhzhGDix5jLezNrMD9J1U1AMfV2aSkWA1XuqR7pjPs/Vqf6TaPL7vJMZ4LU05Q==}
engines: {node: '>=18'}
+ '@react-native/babel-plugin-codegen@0.76.9':
+ resolution: {integrity: sha512-vxL/vtDEIYHfWKm5oTaEmwcnNGsua/i9OjIxBDBFiJDu5i5RU3bpmDiXQm/bJxrJNPRp5lW0I0kpGihVhnMAIQ==}
+ engines: {node: '>=18'}
+
'@react-native/babel-preset@0.76.7':
resolution: {integrity: sha512-/c5DYZ6y8tyg+g8tgXKndDT7mWnGmkZ9F+T3qNDfoE3Qh7ucrNeC2XWvU9h5pk8eRtj9l4SzF4aO1phzwoibyg==}
engines: {node: '>=18'}
peerDependencies:
'@babel/core': '*'
+ '@react-native/babel-preset@0.76.9':
+ resolution: {integrity: sha512-TbSeCplCM6WhL3hR2MjC/E1a9cRnMLz7i767T7mP90oWkklEjyPxWl+0GGoVGnJ8FC/jLUupg/HvREKjjif6lw==}
+ engines: {node: '>=18'}
+ peerDependencies:
+ '@babel/core': '*'
+
'@react-native/codegen@0.76.7':
resolution: {integrity: sha512-FAn585Ll65YvkSrKDyAcsdjHhhAGiMlSTUpHh0x7J5ntudUns+voYms0xMP+pEPt0XuLdjhD7zLIIlAWP407+g==}
engines: {node: '>=18'}
peerDependencies:
'@babel/preset-env': ^7.1.6
- '@react-native/community-cli-plugin@0.76.7':
- resolution: {integrity: sha512-lrcsY2WPLCEWU1pjdNV9+Ccj8vCEwCCURZiPa5aqi7lKB4C++1hPrxA8/CWWnTNcQp76DsBKGYqTFj7Ud4aupw==}
+ '@react-native/codegen@0.76.9':
+ resolution: {integrity: sha512-AzlCHMTKrAVC2709V4ZGtBXmGVtWTpWm3Ruv5vXcd3/anH4mGucfJ4rjbWKdaYQJMpXa3ytGomQrsIsT/s8kgA==}
engines: {node: '>=18'}
peerDependencies:
- '@react-native-community/cli-server-api': '*'
+ '@babel/preset-env': ^7.1.6
+
+ '@react-native/community-cli-plugin@0.76.9':
+ resolution: {integrity: sha512-08jx8ixCjjd4jNQwNpP8yqrjrDctN2qvPPlf6ebz1OJQk8e1sbUl3wVn1zhhMvWrYcaraDnatPb5uCPq+dn3NQ==}
+ engines: {node: '>=18'}
+ peerDependencies:
+ '@react-native-community/cli': '*'
peerDependenciesMeta:
- '@react-native-community/cli-server-api':
+ '@react-native-community/cli':
optional: true
'@react-native/debugger-frontend@0.76.7':
resolution: {integrity: sha512-89ZtZXt7ZxE94i7T94qzZMhp4Gfcpr/QVpGqEaejAxZD+gvDCH21cYSF+/Rz2ttBazm0rk5MZ0mFqb0Iqp1jmw==}
engines: {node: '>=18'}
+ '@react-native/debugger-frontend@0.76.9':
+ resolution: {integrity: sha512-0Ru72Bm066xmxFuOXhhvrryxvb57uI79yDSFf+hxRpktkC98NMuRenlJhslMrbJ6WjCu1vOe/9UjWNYyxXTRTA==}
+ engines: {node: '>=18'}
+
'@react-native/dev-middleware@0.76.7':
resolution: {integrity: sha512-Jsw8g9DyLPnR9yHEGuT09yHZ7M88/GL9CtU9WmyChlBwdXSeE3AmRqLegsV3XcgULQ1fqdemokaOZ/MwLYkjdA==}
engines: {node: '>=18'}
- '@react-native/gradle-plugin@0.76.7':
- resolution: {integrity: sha512-gQI6RcrJbigU8xk7F960C5xQIgvbBj20TUvGecD+N2PHfbLpqR+92cj7hz3UcbrCONmTP40WHnbMMJ8P+kLsrA==}
+ '@react-native/dev-middleware@0.76.9':
+ resolution: {integrity: sha512-xkd3C3dRcmZLjFTEAOvC14q3apMLouIvJViCZY/p1EfCMrNND31dgE1dYrLTiI045WAWMt5bD15i6f7dE2/QWA==}
engines: {node: '>=18'}
- '@react-native/js-polyfills@0.76.7':
- resolution: {integrity: sha512-+iEikj6c6Zvrg1c3cYMeiPB+5nS8EaIC3jCtP6Muk3qc7c386IymEPM2xycIlfg04DPZvO3D4P2/vaO9/TCnUg==}
+ '@react-native/gradle-plugin@0.76.9':
+ resolution: {integrity: sha512-uGzp3dL4GfNDz+jOb8Nik1Vrfq1LHm0zESizrGhHACFiFlUSflVAnWuUAjlZlz5XfLhzGVvunG4Vdrpw8CD2ng==}
engines: {node: '>=18'}
- '@react-native/metro-babel-transformer@0.76.7':
- resolution: {integrity: sha512-jDS1wR7q46xY5ah+jF714Mvss9l7+lmwW/tplahZgLKozkYDC8Td5o9TOCgKlv18acw9H1V7zv8ivuRSj8ICPg==}
+ '@react-native/js-polyfills@0.76.9':
+ resolution: {integrity: sha512-s6z6m8cK4SMjIX1hm8LT187aQ6//ujLrjzDBogqDCYXRbfjbAYovw5as/v2a2rhUIyJbS3UjokZm3W0H+Oh/RQ==}
+ engines: {node: '>=18'}
+
+ '@react-native/metro-babel-transformer@0.76.9':
+ resolution: {integrity: sha512-HGq11347UHNiO/NvVbAO35hQCmH8YZRs7in7nVq7SL99pnpZK4WXwLdAXmSuwz5uYqOuwnKYDlpadz8fkE94Mg==}
engines: {node: '>=18'}
peerDependencies:
'@babel/core': '*'
@@ -1077,8 +1101,11 @@ packages:
'@react-native/normalize-colors@0.76.7':
resolution: {integrity: sha512-ST1xxBuYVIXPdD81dR6+tzIgso7m3pa9+6rOBXTh5Xm7KEEFik7tnQX+GydXYMp3wr1gagJjragdXkPnxK6WNg==}
- '@react-native/virtualized-lists@0.76.7':
- resolution: {integrity: sha512-pRUf1jUO8H9Ft04CaWv76t34QI9wY0sydoYlIwEtqXjjMJgmgDoOCAWBjArgn2mk8/rK+u/uicI67ZCYCp1pJw==}
+ '@react-native/normalize-colors@0.76.9':
+ resolution: {integrity: sha512-TUdMG2JGk72M9d8DYbubdOlrzTYjw+YMe/xOnLU4viDgWRHsCbtRS9x0IAxRjs3amj/7zmK3Atm8jUPvdAc8qw==}
+
+ '@react-native/virtualized-lists@0.76.9':
+ resolution: {integrity: sha512-2neUfZKuqMK2LzfS8NyOWOyWUJOWgDym5fUph6fN9qF+LNPjAvnc4Zr9+o+59qjNu/yXwQgVMWNU4+8WJuPVWw==}
engines: {node: '>=18'}
peerDependencies:
'@types/react': ^18.2.6
@@ -1100,10 +1127,11 @@ packages:
'@sinonjs/fake-timers@10.3.0':
resolution: {integrity: sha512-V4BG07kuYSUkTCSBHG8G8TNhM+F19jXFWnQtzj+we8DrkpSBCee9Z3Ms8yiGer/dlmhe35/Xdgyo3/0rQKg7YA==}
- '@typegpu/noise@0.0.3':
- resolution: {integrity: sha512-LHbtsMOBlWT+d2ikrFEDNpLigtLJxMXrXDnlxvYa1nbxzaiVs+oOoE70qzr/CYNdFvipirPrkcTQJR9C7G8C3g==}
+ '@typegpu/noise@0.0.6':
+ resolution: {integrity: sha512-2l+A9vZ//gGJ1gzx1HcY2+4lDB798D74MJGTklUgQhm+cul0k9KIKnRNSOgb0/xS+xhdc6+KRtddGQWaRRUC0Q==}
+ version: 0.0.6
peerDependencies:
- typegpu: ^0.3.2
+ typegpu: ^0.5.6
'@types/babel__core@7.20.5':
resolution: {integrity: sha512-qoQprZvz5wQFJwMDqeseRXWv3rqMvhgpbXFfVyWhbx9X47POIA6i/+dXefEmZKoAgOaTdaIgNSMqMIU61yRyzA==}
@@ -1622,6 +1650,9 @@ packages:
resolution: {integrity: sha512-Ds09qNh8yw3khSjiJjiUInaGX9xlqZDY7JVryGxdxV7NPeuqQfplOpQ66yJFZut3jLa5zOwkXw1g9EI2uKh4Og==}
engines: {node: '>=8'}
+ defu@6.1.4:
+ resolution: {integrity: sha512-mEQCMmwJu317oSz8CwdIOdwf3xMif1ttiM8LTufzc3g6kR+9Pe236twL8j3IYT1F7GfRgGcW6MWxzZjLIkuHIg==}
+
del@6.1.1:
resolution: {integrity: sha512-ua8BhapfP0JUJKC/zV9yHHDW/rDoDxP4Zhn3AkA6/xT6gY7jYXJiaeyBZznYVujhZZET+UgcbZiQ7sN3WqcImg==}
engines: {node: '>=10'}
@@ -2367,6 +2398,10 @@ packages:
lru-cache@5.1.1:
resolution: {integrity: sha512-KpNARQA3Iwv+jTA0utUVVbrh+Jlrr1Fv0e56GGzAFOXN7dk/FviaDW8LHmK52DlcH4WP2n6gI8vN1aesBFgo9w==}
+ magic-string-ast@0.9.1:
+ resolution: {integrity: sha512-18dv2ZlSSgJ/jDWlZGKfnDJx56ilNlYq9F7NnwuWTErsmYmqJ2TWE4l1o2zlUHBYUGBy3tIhPCC1gxq8M5HkMA==}
+ engines: {node: '>=20.18.0'}
+
magic-string@0.30.17:
resolution: {integrity: sha512-sNPKHvyjVf7gyjwS4xGTaW/mCnF8wnjtifKBEhxfZ7E/S8tQ0rssrwGNn6q8JH/ohItJfSQp9mBtQYuTlH5QnA==}
@@ -2748,6 +2783,10 @@ packages:
resolution: {integrity: sha512-I3EurrIQMlRc9IaAZnqRR044Phh2DXY+55o7uJ0V+hYZAcQYSuFWsc9q5PvyDHUSCe1Qxn/iBz+78s86zWnGag==}
engines: {node: '>=10'}
+ picomatch@4.0.2:
+ resolution: {integrity: sha512-M7BAV6Rlcy5u+m6oPhAPFgJTzAioX/6B0DxyvDlo9l8+T3nLKbrczg2WLUyzd45L8RqfUMyGPzekbMvX2Ldkwg==}
+ engines: {node: '>=12'}
+
pify@4.0.1:
resolution: {integrity: sha512-uB80kBFb/tfd68bVleG9T5GGsGPjJrLAUpR5PZIrhBnIaRTQRjqdJSsIKkOP6OAIFbj7GOrcudc5pNjZ+geV2g==}
engines: {node: '>=6'}
@@ -2841,8 +2880,8 @@ packages:
react: '*'
react-native: '*'
- react-native@0.76.7:
- resolution: {integrity: sha512-GPJcQeO3qUi1MvuhsC2DC6tH8gJQ4uc4JWPORrdeuCGFWE3QLsN8/hiChTEvJREHLfQSV61YPI8gIOtAQ8c37g==}
+ react-native@0.76.9:
+ resolution: {integrity: sha512-+LRwecWmTDco7OweGsrECIqJu0iyrREd6CTCgC/uLLYipiHvk+MH9nd6drFtCw/6Blz6eoKTcH9YTTJusNtrWg==}
engines: {node: '>=18'}
hasBin: true
peerDependencies:
@@ -3204,16 +3243,12 @@ packages:
through@2.3.8:
resolution: {integrity: sha512-w89qg7PI8wAdvX60bMDP+bFoD5Dvhm9oLheFp5O4a2QF0cSBGsBX4qZmadPMvVqlLJBBci+WqGGOAPvcDeNSVg==}
- tinyest-for-wgsl@0.1.0-alpha.5:
- resolution: {integrity: sha512-4De+y8vGXYjGRDMOK+TuOQlmS+dmc1ff+EWGXx//YtOtiqP991xMTFD0IKErTy23Ez2q7tETsheCb4IkgN1iOg==}
+ tinyest-for-wgsl@0.1.0:
+ resolution: {integrity: sha512-WShVS0bykycxzPhRGujFJGtNqVax/SBv2/k7NpYMSLSey2eSN8z3/nF5In/rS3o4CptCmKi+j/kzkKBU8l060w==}
engines: {node: '>=12.20.0'}
- tinyest@0.1.0-alpha.4:
- resolution: {integrity: sha512-s+cndC8E+icfzHMq/exGIMCHcNlu7ULGSLQUCIWb4ZrRilEDKdkYnUhgChqQSSVXCT36VY9k6H9CGbcyi2Aa6g==}
- engines: {node: '>=12.20.0'}
-
- tinyest@0.1.0-alpha.5:
- resolution: {integrity: sha512-sCGNOZ+3A103AjQ8hA9yV3zjBDTZWppRjHJGEeX95OEcV0A3m52FBlozSVkUc1b5iaQr0ZNUgXoVjlr2iXbpmw==}
+ tinyest@0.1.0:
+ resolution: {integrity: sha512-6onWUaqRe3N7/AMbKyYCDeKi0GS7xUyH35uIePBRN2Nt73T/BDUGHFxEOcxWWK8F0oK3+4KiwSRiSFtFm/Cy+w==}
engines: {node: '>=12.20.0'}
tmp@0.0.33:
@@ -3259,8 +3294,9 @@ packages:
typed-binary@4.3.2:
resolution: {integrity: sha512-HT3pIBM2njCZUmeczDaQUUErGiM6GXFCqMsHegE12HCoBtvHCkfR10JJni0TeGOTnLilTd6YFyj+YhflqQDrDQ==}
- typegpu@0.5.1:
- resolution: {integrity: sha512-ax7ZTW1cQEQbwMpOrpgb6Mok4KxRHhuf6v9ut2n4LT12DbKU4pnE7R4Rjf7ETg3rqzRA93mZMfmdIgvSyRMhcg==}
+ typegpu@https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c:
+ resolution: {tarball: https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c}
+ version: 0.5.6
engines: {node: '>=12.20.0'}
typescript@5.8.2:
@@ -3323,11 +3359,14 @@ packages:
resolution: {integrity: sha512-pjy2bYhSsufwWlKwPc+l3cN7+wuJlK6uz0YdJEOlQDbl6jo/YlPi4mb8agUkVC8BF7V8NuzeyPNqRksA3hztKQ==}
engines: {node: '>= 0.8'}
- unplugin-typegpu@0.1.0-alpha.5:
- resolution: {integrity: sha512-VjlXJTJAQ18y9msudggbnLWnouISJl6h6n58A3n1cArn6YCAlJgyK8WphuiYve3tm94nf2XsBYlp/UKWBCdLKQ==}
+ unplugin-typegpu@0.1.0:
+ resolution: {integrity: sha512-LlNDHzie0Zy2c0n8ABbyu51Q3SdTUdwzEMmpUlXmJXV5YtHNPKwEY/aJAKI+B7udAg0ZHxeX+R0vtv8GFn6XJA==}
+ version: 0.1.0
+ peerDependencies:
+ typegpu: ^0.5.6
- unplugin@2.2.0:
- resolution: {integrity: sha512-m1ekpSwuOT5hxkJeZGRxO7gXbXT3gF26NjQ7GdVHoLoF8/nopLcd/QfPigpCy7i51oFHiRJg/CyHhj4vs2+KGw==}
+ unplugin@2.3.2:
+ resolution: {integrity: sha512-3n7YA46rROb3zSj8fFxtxC/PqoyvYQ0llwz9wtUPUutr9ig09C8gGo5CWCwHrUzlqC1LLR43kxp5vEIyH1ac1w==}
engines: {node: '>=18.12.0'}
update-browserslist-db@1.1.3:
@@ -4379,7 +4418,7 @@ snapshots:
dependencies:
regenerator-runtime: 0.14.1
- '@babel/standalone@7.26.9': {}
+ '@babel/standalone@7.27.0': {}
'@babel/template@7.26.9':
dependencies:
@@ -4878,7 +4917,7 @@ snapshots:
'@probe.gl/stats@4.1.0': {}
- '@react-native/assets-registry@0.76.7': {}
+ '@react-native/assets-registry@0.76.9': {}
'@react-native/babel-plugin-codegen@0.76.7(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
dependencies:
@@ -4887,6 +4926,13 @@ snapshots:
- '@babel/preset-env'
- supports-color
+ '@react-native/babel-plugin-codegen@0.76.9(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
+ dependencies:
+ '@react-native/codegen': 0.76.9(@babel/preset-env@7.26.9(@babel/core@7.26.9))
+ transitivePeerDependencies:
+ - '@babel/preset-env'
+ - supports-color
+
'@react-native/babel-preset@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
dependencies:
'@babel/core': 7.26.9
@@ -4938,6 +4984,57 @@ snapshots:
- '@babel/preset-env'
- supports-color
+ '@react-native/babel-preset@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
+ dependencies:
+ '@babel/core': 7.26.9
+ '@babel/plugin-proposal-export-default-from': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-syntax-dynamic-import': 7.8.3(@babel/core@7.26.9)
+ '@babel/plugin-syntax-export-default-from': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-syntax-nullish-coalescing-operator': 7.8.3(@babel/core@7.26.9)
+ '@babel/plugin-syntax-optional-chaining': 7.8.3(@babel/core@7.26.9)
+ '@babel/plugin-transform-arrow-functions': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-async-generator-functions': 7.26.8(@babel/core@7.26.9)
+ '@babel/plugin-transform-async-to-generator': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-block-scoping': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-class-properties': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-classes': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-computed-properties': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-destructuring': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-flow-strip-types': 7.26.5(@babel/core@7.26.9)
+ '@babel/plugin-transform-for-of': 7.26.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-function-name': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-literals': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-logical-assignment-operators': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-modules-commonjs': 7.26.3(@babel/core@7.26.9)
+ '@babel/plugin-transform-named-capturing-groups-regex': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-nullish-coalescing-operator': 7.26.6(@babel/core@7.26.9)
+ '@babel/plugin-transform-numeric-separator': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-object-rest-spread': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-optional-catch-binding': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-optional-chaining': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-parameters': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-private-methods': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-private-property-in-object': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-react-display-name': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-react-jsx': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-react-jsx-self': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-react-jsx-source': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-regenerator': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-runtime': 7.26.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-shorthand-properties': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-spread': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-sticky-regex': 7.25.9(@babel/core@7.26.9)
+ '@babel/plugin-transform-typescript': 7.26.8(@babel/core@7.26.9)
+ '@babel/plugin-transform-unicode-regex': 7.25.9(@babel/core@7.26.9)
+ '@babel/template': 7.26.9
+ '@react-native/babel-plugin-codegen': 0.76.9(@babel/preset-env@7.26.9(@babel/core@7.26.9))
+ babel-plugin-syntax-hermes-parser: 0.25.1
+ babel-plugin-transform-flow-enums: 0.0.2(@babel/core@7.26.9)
+ react-refresh: 0.14.2
+ transitivePeerDependencies:
+ - '@babel/preset-env'
+ - supports-color
+
'@react-native/codegen@0.76.7(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
dependencies:
'@babel/parser': 7.26.9
@@ -4952,10 +5049,24 @@ snapshots:
transitivePeerDependencies:
- supports-color
- '@react-native/community-cli-plugin@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
+ '@react-native/codegen@0.76.9(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
dependencies:
- '@react-native/dev-middleware': 0.76.7
- '@react-native/metro-babel-transformer': 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))
+ '@babel/parser': 7.26.9
+ '@babel/preset-env': 7.26.9(@babel/core@7.26.9)
+ glob: 7.2.3
+ hermes-parser: 0.23.1
+ invariant: 2.2.4
+ jscodeshift: 0.14.0(@babel/preset-env@7.26.9(@babel/core@7.26.9))
+ mkdirp: 0.5.6
+ nullthrows: 1.1.1
+ yargs: 17.7.2
+ transitivePeerDependencies:
+ - supports-color
+
+ '@react-native/community-cli-plugin@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
+ dependencies:
+ '@react-native/dev-middleware': 0.76.9
+ '@react-native/metro-babel-transformer': 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))
chalk: 4.1.2
execa: 5.1.1
invariant: 2.2.4
@@ -4975,6 +5086,8 @@ snapshots:
'@react-native/debugger-frontend@0.76.7': {}
+ '@react-native/debugger-frontend@0.76.9': {}
+
'@react-native/dev-middleware@0.76.7':
dependencies:
'@isaacs/ttlcache': 1.4.1
@@ -4994,14 +5107,33 @@ snapshots:
- supports-color
- utf-8-validate
- '@react-native/gradle-plugin@0.76.7': {}
+ '@react-native/dev-middleware@0.76.9':
+ dependencies:
+ '@isaacs/ttlcache': 1.4.1
+ '@react-native/debugger-frontend': 0.76.9
+ chrome-launcher: 0.15.2
+ chromium-edge-launcher: 0.2.0
+ connect: 3.7.0
+ debug: 2.6.9
+ invariant: 2.2.4
+ nullthrows: 1.1.1
+ open: 7.4.2
+ selfsigned: 2.4.1
+ serve-static: 1.16.2
+ ws: 6.2.3
+ transitivePeerDependencies:
+ - bufferutil
+ - supports-color
+ - utf-8-validate
- '@react-native/js-polyfills@0.76.7': {}
+ '@react-native/gradle-plugin@0.76.9': {}
- '@react-native/metro-babel-transformer@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
+ '@react-native/js-polyfills@0.76.9': {}
+
+ '@react-native/metro-babel-transformer@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))':
dependencies:
'@babel/core': 7.26.9
- '@react-native/babel-preset': 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))
+ '@react-native/babel-preset': 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))
hermes-parser: 0.23.1
nullthrows: 1.1.1
transitivePeerDependencies:
@@ -5010,12 +5142,14 @@ snapshots:
'@react-native/normalize-colors@0.76.7': {}
- '@react-native/virtualized-lists@0.76.7(@types/react@18.3.18)(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)':
+ '@react-native/normalize-colors@0.76.9': {}
+
+ '@react-native/virtualized-lists@0.76.9(@types/react@18.3.18)(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)':
dependencies:
invariant: 2.2.4
nullthrows: 1.1.1
react: 18.3.1
- react-native: 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
+ react-native: 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
optionalDependencies:
'@types/react': 18.3.18
@@ -5034,9 +5168,9 @@ snapshots:
dependencies:
'@sinonjs/commons': 3.0.1
- '@typegpu/noise@0.0.3(typegpu@0.5.1)':
+ '@typegpu/noise@0.0.6(typegpu@https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c)':
dependencies:
- typegpu: 0.5.1
+ typegpu: https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c
'@types/babel__core@7.20.5':
dependencies:
@@ -5600,6 +5734,8 @@ snapshots:
define-lazy-prop@2.0.0: {}
+ defu@6.1.4: {}
+
del@6.1.1:
dependencies:
globby: 11.1.0
@@ -5726,42 +5862,42 @@ snapshots:
signal-exit: 3.0.7
strip-final-newline: 2.0.0
- expo-asset@11.0.4(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1):
+ expo-asset@11.0.4(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1):
dependencies:
'@expo/image-utils': 0.6.5
- expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
- expo-constants: 17.0.7(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))
+ expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
+ expo-constants: 17.0.7(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))
invariant: 2.2.4
md5-file: 3.2.3
react: 18.3.1
- react-native: 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
+ react-native: 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
transitivePeerDependencies:
- supports-color
- expo-constants@17.0.7(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)):
+ expo-constants@17.0.7(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)):
dependencies:
'@expo/config': 10.0.10
'@expo/env': 0.4.2
- expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
- react-native: 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
+ expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
+ react-native: 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
transitivePeerDependencies:
- supports-color
- expo-file-system@18.0.11(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)):
+ expo-file-system@18.0.11(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)):
dependencies:
- expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
- react-native: 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
+ expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
+ react-native: 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
web-streams-polyfill: 3.3.3
- expo-font@13.0.4(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react@18.3.1):
+ expo-font@13.0.4(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react@18.3.1):
dependencies:
- expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
+ expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
fontfaceobserver: 2.3.0
react: 18.3.1
- expo-keep-awake@14.0.3(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react@18.3.1):
+ expo-keep-awake@14.0.3(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react@18.3.1):
dependencies:
- expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
+ expo: 52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
react: 18.3.1
expo-modules-autolinking@2.0.8:
@@ -5779,7 +5915,7 @@ snapshots:
dependencies:
invariant: 2.2.4
- expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1):
+ expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1):
dependencies:
'@babel/runtime': 7.26.9
'@expo/cli': 0.22.18
@@ -5789,16 +5925,16 @@ snapshots:
'@expo/metro-config': 0.19.11
'@expo/vector-icons': 14.0.4
babel-preset-expo: 12.0.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))
- expo-asset: 11.0.4(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
- expo-constants: 17.0.7(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))
- expo-file-system: 18.0.11(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))
- expo-font: 13.0.4(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react@18.3.1)
- expo-keep-awake: 14.0.3(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react@18.3.1)
+ expo-asset: 11.0.4(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
+ expo-constants: 17.0.7(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))
+ expo-file-system: 18.0.11(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))
+ expo-font: 13.0.4(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react@18.3.1)
+ expo-keep-awake: 14.0.3(expo@52.0.37(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1))(react@18.3.1)
expo-modules-autolinking: 2.0.8
expo-modules-core: 2.2.2
fbemitter: 3.0.0
react: 18.3.1
- react-native: 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
+ react-native: 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
web-streams-polyfill: 3.3.3
whatwg-url-without-unicode: 8.0.0-3
transitivePeerDependencies:
@@ -6384,6 +6520,10 @@ snapshots:
dependencies:
yallist: 3.1.1
+ magic-string-ast@0.9.1:
+ dependencies:
+ magic-string: 0.30.17
+
magic-string@0.30.17:
dependencies:
'@jridgewell/sourcemap-codec': 1.5.0
@@ -6825,6 +6965,8 @@ snapshots:
picomatch@3.0.1: {}
+ picomatch@4.0.2: {}
+
pify@4.0.1: {}
pirates@4.0.6: {}
@@ -6914,21 +7056,21 @@ snapshots:
react-is@18.3.1: {}
- react-native-wgpu@0.1.23(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1):
+ react-native-wgpu@0.1.23(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1):
dependencies:
react: 18.3.1
- react-native: 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
+ react-native: 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1)
- react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1):
+ react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1):
dependencies:
'@jest/create-cache-key-function': 29.7.0
- '@react-native/assets-registry': 0.76.7
- '@react-native/codegen': 0.76.7(@babel/preset-env@7.26.9(@babel/core@7.26.9))
- '@react-native/community-cli-plugin': 0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))
- '@react-native/gradle-plugin': 0.76.7
- '@react-native/js-polyfills': 0.76.7
- '@react-native/normalize-colors': 0.76.7
- '@react-native/virtualized-lists': 0.76.7(@types/react@18.3.18)(react-native@0.76.7(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
+ '@react-native/assets-registry': 0.76.9
+ '@react-native/codegen': 0.76.9(@babel/preset-env@7.26.9(@babel/core@7.26.9))
+ '@react-native/community-cli-plugin': 0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))
+ '@react-native/gradle-plugin': 0.76.9
+ '@react-native/js-polyfills': 0.76.9
+ '@react-native/normalize-colors': 0.76.9
+ '@react-native/virtualized-lists': 0.76.9(@types/react@18.3.18)(react-native@0.76.9(@babel/core@7.26.9)(@babel/preset-env@7.26.9(@babel/core@7.26.9))(@types/react@18.3.18)(react@18.3.1))(react@18.3.1)
abort-controller: 3.0.0
anser: 1.4.10
ansi-regex: 5.0.1
@@ -6965,7 +7107,7 @@ snapshots:
transitivePeerDependencies:
- '@babel/core'
- '@babel/preset-env'
- - '@react-native-community/cli-server-api'
+ - '@react-native-community/cli'
- bufferutil
- encoding
- supports-color
@@ -7323,13 +7465,11 @@ snapshots:
through@2.3.8: {}
- tinyest-for-wgsl@0.1.0-alpha.5:
+ tinyest-for-wgsl@0.1.0:
dependencies:
- tinyest: 0.1.0-alpha.4
-
- tinyest@0.1.0-alpha.4: {}
+ tinyest: 0.1.0
- tinyest@0.1.0-alpha.5: {}
+ tinyest@0.1.0: {}
tmp@0.0.33:
dependencies:
@@ -7359,9 +7499,9 @@ snapshots:
typed-binary@4.3.2: {}
- typegpu@0.5.1:
+ typegpu@https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c:
dependencies:
- tinyest: 0.1.0-alpha.5
+ tinyest: 0.1.0
typed-binary: 4.3.2
typescript@5.8.2: {}
@@ -7403,17 +7543,21 @@ snapshots:
unpipe@1.0.0: {}
- unplugin-typegpu@0.1.0-alpha.5:
+ unplugin-typegpu@0.1.0(typegpu@https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c):
dependencies:
- '@babel/standalone': 7.26.9
+ '@babel/standalone': 7.27.0
+ defu: 6.1.4
estree-walker: 3.0.3
- magic-string: 0.30.17
- tinyest-for-wgsl: 0.1.0-alpha.5
- unplugin: 2.2.0
+ magic-string-ast: 0.9.1
+ picomatch: 4.0.2
+ tinyest-for-wgsl: 0.1.0
+ typegpu: https://pkg.pr.new/software-mansion/TypeGPU/typegpu@43a643ac32470f0b3b51acb90970b36d418d8b8c
+ unplugin: 2.3.2
- unplugin@2.2.0:
+ unplugin@2.3.2:
dependencies:
acorn: 8.14.1
+ picomatch: 4.0.2
webpack-virtual-modules: 0.6.2
update-browserslist-db@1.1.3(browserslist@4.24.4):