Skip to content

训练问题 #126

@timelovery

Description

@timelovery

train log

poch 169/200, train G: loss=1.0255, val: sm=0.6636, val: em=0.5854, val: wfm=0.6213, val: mae=0.1898, 1.7m 4.8h/5.7h
epoch 170/200, train G: loss=1.0265, val: sm=0.6728, val: em=0.5950, val: wfm=0.6210, val: mae=0.1883, 1.7m 4.8h/5.7h
epoch 171/200, train G: loss=1.0286, val: sm=0.6739, val: em=0.5958, val: wfm=0.6212, val: mae=0.1881, 1.7m 4.8h/5.7h
epoch 172/200, train G: loss=1.0231, val: sm=0.6646, val: em=0.5862, val: wfm=0.6219, val: mae=0.1895, 1.7m 4.9h/5.7h
epoch 173/200, train G: loss=1.0275, val: sm=0.6659, val: em=0.5880, val: wfm=0.6217, val: mae=0.1893, 1.7m 4.9h/5.7h
epoch 174/200, train G: loss=1.0238, val: sm=0.6744, val: em=0.5956, val: wfm=0.6211, val: mae=0.1880, 1.7m 4.9h/5.7h
epoch 175/200, train G: loss=1.0236, val: sm=0.6710, val: em=0.5918, val: wfm=0.6198, val: mae=0.1889, 1.7m 5.0h/5.7h
epoch 176/200, train G: loss=1.0238, val: sm=0.6677, val: em=0.5893, val: wfm=0.6222, val: mae=0.1890, 1.7m 5.0h/5.7h
epoch 177/200, train G: loss=1.0261, val: sm=0.6823, val: em=0.6061, val: wfm=0.6233, val: mae=0.1861, 1.7m 5.0h/5.7h
epoch 178/200, train G: loss=1.0251, val: sm=0.6721, val: em=0.5940, val: wfm=0.6215, val: mae=0.1883, 1.7m 5.0h/5.7h
epoch 179/200, train G: loss=1.0253, val: sm=0.6553, val: em=0.5757, val: wfm=0.6168, val: mae=0.1920, 1.7m 5.1h/5.7h
epoch 180/200, train G: loss=1.0226, val: sm=0.6783, val: em=0.5994, val: wfm=0.6205, val: mae=0.1875, 1.7m 5.1h/5.7h
epoch 181/200, train G: loss=1.0230, val: sm=0.6615, val: em=0.5820, val: wfm=0.6180, val: mae=0.1908, 1.7m 5.1h/5.7h
epoch 182/200, train G: loss=1.0238, val: sm=0.6684, val: em=0.5902, val: wfm=0.6215, val: mae=0.1890, 1.7m 5.2h/5.7h
epoch 183/200, train G: loss=1.0246, val: sm=0.6664, val: em=0.5873, val: wfm=0.6184, val: mae=0.1899, 1.7m 5.2h/5.7h
epoch 184/200, train G: loss=1.0233, val: sm=0.6723, val: em=0.5926, val: wfm=0.6189, val: mae=0.1888, 1.7m 5.2h/5.7h
epoch 185/200, train G: loss=1.0241, val: sm=0.6676, val: em=0.5874, val: wfm=0.6169, val: mae=0.1900, 1.7m 5.2h/5.7h
epoch 186/200, train G: loss=1.0237, val: sm=0.6597, val: em=0.5810, val: wfm=0.6193, val: mae=0.1908, 1.7m 5.3h/5.7h
epoch 187/200, train G: loss=1.0224, val: sm=0.6556, val: em=0.5762, val: wfm=0.6175, val: mae=0.1919, 1.7m 5.3h/5.7h
epoch 188/200, train G: loss=1.0260, val: sm=0.6720, val: em=0.5944, val: wfm=0.6222, val: mae=0.1882, 1.7m 5.3h/5.7h
epoch 189/200, train G: loss=1.0228, val: sm=0.6746, val: em=0.5966, val: wfm=0.6221, val: mae=0.1878, 1.7m 5.3h/5.7h
epoch 190/200, train G: loss=1.0263, val: sm=0.6698, val: em=0.5916, val: wfm=0.6211, val: mae=0.1888, 1.7m 5.4h/5.7h
epoch 191/200, train G: loss=1.0231, val: sm=0.6748, val: em=0.5958, val: wfm=0.6193, val: mae=0.1883, 1.7m 5.4h/5.7h
epoch 192/200, train G: loss=1.0240, val: sm=0.6672, val: em=0.5873, val: wfm=0.6176, val: mae=0.1899, 1.7m 5.4h/5.7h
epoch 193/200, train G: loss=1.0229, val: sm=0.6724, val: em=0.5931, val: wfm=0.6187, val: mae=0.1888, 1.7m 5.5h/5.7h
epoch 194/200, train G: loss=1.0225, val: sm=0.6729, val: em=0.5938, val: wfm=0.6193, val: mae=0.1886, 1.7m 5.5h/5.7h
epoch 195/200, train G: loss=1.0223, val: sm=0.6673, val: em=0.5876, val: wfm=0.6177, val: mae=0.1899, 1.7m 5.5h/5.7h
epoch 196/200, train G: loss=1.0216, val: sm=0.6647, val: em=0.5848, val: wfm=0.6174, val: mae=0.1903, 1.7m 5.5h/5.7h
epoch 197/200, train G: loss=1.0256, val: sm=0.6724, val: em=0.5942, val: wfm=0.6209, val: mae=0.1884, 1.7m 5.6h/5.7h
epoch 198/200, train G: loss=1.0230, val: sm=0.6629, val: em=0.5846, val: wfm=0.6201, val: mae=0.1901, 1.7m 5.6h/5.7h
epoch 199/200, train G: loss=1.0232, val: sm=0.6637, val: em=0.5850, val: wfm=0.6193, val: mae=0.1902, 1.7m 5.6h/5.7h
epoch 200/200, train G: loss=1.0230, val: sm=0.6676, val: em=0.5891, val: wfm=0.6199, val: mae=0.1894, 1.7m 5.7h/5.7h

infer

Image

trian yaml

train_dataset:
dataset:
name: paired-image-folders
args:
root_path_1: load/CAMO1/Images/Train
root_path_2: load/CAMO1/GT
cache: none
split_key: train
wrapper:
name: train
args:
inp_size: 1024
augment: true
batch_size: 1

val_dataset:
dataset:
name: paired-image-folders
args:
root_path_1: load/CAMO1/Images/Test
root_path_2: load/CAMO1/GT
cache: none
split_key: test
wrapper:
name: val
args:
inp_size: 1024
batch_size: 1

test_dataset:
dataset:
name: paired-image-folders
args:
root_path_1: load/CAMO1/Images/Test
root_path_2: load/CAMO1/GT
cache: none
split_key: test
wrapper:
name: val
args:
inp_size: 1024
batch_size: 1

eval_type: cod
sam_checkpoint: ./pretrained/sam_vit_b_01ec64.pth
data_norm:
inp:
sub:
- 0.5
div:
- 0.5
gt:
sub:
- 0.5
div:
- 0.5
gt_rgb:
sub:
- 0.5
div:
- 0.5
model:
name: sam
args:
inp_size: 1024
loss: iou
encoder_mode:
name: sam
img_size: 1024
mlp_ratio: 4
patch_size: 16
qkv_bias: true
use_rel_pos: true
window_size: 14
out_chans: 256
scale_factor: 32
input_type: fft
freq_nums: 0.25
prompt_type: highpass
prompt_embed_dim: 256
tuning_stage: 1234
handcrafted_tune: true
embedding_tune: true
adaptor: adaptor
embed_dim: 768
depth: 12
num_heads: 12
global_attn_indexes:
- 2
- 5
- 8
- 11
optimizer:
name: adamw
args:
lr: 0.00001
lr_min: 1.0e-7
epoch_max: 200

multi_step_lr:
milestones:

  • 1
    gamma: 0.1
    epoch_val: 1
    epoch_save: 1

#resume: 60
#start_epoch: 60

Train data

Image

请问是我训练数据存放不对,还是有什么处理没有做,为什么训练完全没有学到东西呢

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions