Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions Evaluation/HumanEval/eval_instruct.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import torch
from pathlib import Path
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor

data_abs_dir = Path(__file__).parent / "data"

Expand Down Expand Up @@ -66,10 +67,8 @@ def generate_main(args):
examples = [json.loads(x) for x in open(problem_file) if x.strip()]
print("Read {} examples for evaluation over.".format(len(examples)))

generated_examples = []
for ex in tqdm(examples, desc='Generating'):
gen_example = generate_one(ex, args.language, tokenizer, model)
generated_examples.append(gen_example)
with ThreadPoolExecutor(max_workers=8) as executor:
generated_examples = list(executor.map(lambda ex: generate_one(ex, args.language, tokenizer, model), examples))

print("Generate all over!!!")
with open(saved_path, 'w', encoding='utf-8') as fw:
Expand Down
13 changes: 8 additions & 5 deletions Evaluation/MBPP/eval_instruct.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import re
from pathlib import Path
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor

data_abs_dir = Path(__file__).parent / "data"

Expand Down Expand Up @@ -86,6 +87,11 @@ def generate_one(example, tokenizer, model):
example['gpt_completion'] = output
return convert_for_evaluation(example)

def generate_and_log_code(ex):
gen_code = generate_one(ex, tokenizer, model)
print("Generated {}/{}...".format(examples.index(ex) + 1, len(examples))) # Safe logging
return gen_code

def generate_main(args):
model_name_or_path = args.model
saved_path = args.output_path
Expand All @@ -106,11 +112,8 @@ def generate_main(args):
examples = list(read_test_examples(problem_file))
print("Read {} examples for evaluation over.".format(len(examples)))

generated_examples = []
for ex in tqdm(examples, desc='Generating'):
gen_example = generate_one(ex, tokenizer, model)
generated_examples.append(gen_example)
print("Generate {}/{} over...".format(len(generated_examples), len(examples)))
with ThreadPoolExecutor(max_workers=8) as executor:
generated_codes = list(executor.map(generate_and_log_code, examples))

print("Generate all over!!!")
with open(saved_path, 'w', encoding='utf-8') as fw:
Expand Down