Skip to content

A simple agent framework that's capable of browser use + mcp + auto instrument + plan + deep research + more

License

Notifications You must be signed in to change notification settings

femto/minion-agent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Documentation Status Install Discord Twitter Follow Ask DeepWiki

Minion Agent

A powerful agent framework with enhanced capabilities including browser automation, code execution, MCP tool support, and deep research. Now defaults to EXTERNAL_MINION_AGENT framework for superior performance and functionality.

🎬 Demo Videos

Quick Start

Minion Agent now defaults to the powerful EXTERNAL_MINION_AGENT framework, providing enhanced code execution, browser automation, and advanced planning capabilities out of the box.

Installation

pip install minion-agent-x

Or from source

git clone [email protected]:femto/minion-agent.git
cd minion-agent
pip install -e .

Usage

Here's a simple example of how to use Minion Agent:

import asyncio
import os
from dotenv import load_dotenv
from minion_agent import MinionAgent, AgentConfig, AgentFramework
from minion.agents import CodeAgent
import minion_agent

load_dotenv()

async def main():
    # Configure the agent (using EXTERNAL_MINION_AGENT as default)
    agent_config = AgentConfig(
        model_id=os.environ.get("AZURE_DEPLOYMENT_NAME"),
        name="research_assistant",
        description="A helpful research assistant",
        model_args={
            "azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
            "api_key": os.environ.get("AZURE_OPENAI_API_KEY"),
            "api_version": os.environ.get("OPENAI_API_VERSION"),
            "model": "gpt-4o",  # Actual model to use in minion framework
        },
        tools=[
            minion_agent.tools.browser_tool.browser,
        ],
        agent_type=CodeAgent,  # Default agent type for EXTERNAL_MINION_AGENT
    )

    # Create agent with EXTERNAL_MINION_AGENT framework (default)
    agent = await MinionAgent.create_async(AgentFramework.EXTERNAL_MINION_AGENT, agent_config)

    # Run the agent with a question
    result = await agent.run_async("What are the latest developments in AI?")
    print("Agent's response:", result.final_output.content)

if __name__ == "__main__":
    asyncio.run(main())

see example.py see example_browser_use.py see example_with_managed_agents.py see example_deep_research.py see example_reason.py

Agent Frameworks

Minion Agent supports multiple agent frameworks. The default framework is EXTERNAL_MINION_AGENT, which provides enhanced capabilities including:

  • Code Generation and Execution: Advanced code generation with built-in execution capabilities
  • Browser Automation: Integrated browser control and web interaction
  • MCP Tool Support: Full Model Context Protocol integration
  • Enhanced Planning: Sophisticated task planning and execution

Available Frameworks

  • EXTERNAL_MINION_AGENT (Default): Enhanced framework with code execution and browser capabilities
  • SMOLAGENTS: HuggingFace's smolagents framework with planning support
  • LANGCHAIN: LangChain-based agents
  • OPENAI: OpenAI's assistant API
  • BROWSER_USE: Specialized for browser automation tasks
  • DEEP_RESEARCH: Optimized for research and information gathering

Framework-Specific Agent Types

When using EXTERNAL_MINION_AGENT, you can specify different agent types:

from minion.agents import CodeAgent, ToolCallingAgent

agent_config = AgentConfig(
    # ... other config ...
    agent_type=CodeAgent,  # For code generation and execution
    # or
    # agent_type=ToolCallingAgent,  # For general tool calling
)

Configuration

The AgentConfig class accepts the following parameters:

  • model_id: The ID of the model to use (e.g., "gpt-4")
  • name: Name of the agent (default: "Minion")
  • description: Optional description of the agent
  • instructions: Optional system instructions for the agent
  • tools: List of tools the agent can use
  • model_type: model type of the underlying agent framework
  • model_args: Optional dictionary of model-specific arguments
  • agent_type: agent type of the underlying agent framework
  • agent_args: Optional dictionary of agent-specific arguments

MCP Tool Support

Minion Agent supports Model Context Protocol (MCP) tools. Here's how to use them:

Standard MCP Tool

from minion_agent.config import MCPTool

agent_config = AgentConfig(
    # ... other config options ...
    tools=[
        minion_agent.tools.browser_tool.browser,  # Regular tools
        MCPTool(
            command="npx",
            args=["-y", "@modelcontextprotocol/server-filesystem", "/path/to/workspace"]
        )  # MCP tool
    ]
)

SSE-based MCP Tool

You can also use MCP tools over Server-Sent Events (SSE). This is useful for connecting to remote MCP servers:

from minion_agent.config import MCPTool

agent_config = AgentConfig(
    # ... other config options ...
    tools=[
        MCPTool({"url": "http://localhost:8000/sse"}),  # SSE-based tool
    ]
)

⚠️ Security Warning: When using MCP servers over SSE, be extremely cautious and only connect to trusted and verified servers. Always verify the source and security of any MCP server before connecting.

You can also use multiple MCP tools together:

tools=[
    MCPTool(command="npx", args=["..."]),  # Standard MCP tool
    MCPTool({"url": "http://localhost:8000/sse"}),  # SSE-based tool
    MCPTool({"url": "http://localhost:8001/sse"})   # Another SSE-based tool
]

Planning Support in smolagents

You can enable automatic planning by setting the planning_interval in agent_args (smolagents) :

agent_config = AgentConfig(
    # ... other config options ...
    agent_args={
        "planning_interval": 3,  # Agent will create a plan every 3 steps
        "additional_authorized_imports": "*"
    }
)

The planning_interval parameter determines how often the agent should create a new plan. When set to 3, the agent will:

  1. Create an initial plan for the task
  2. Execute 3 steps according to the plan
  3. Re-evaluate and create a new plan based on progress
  4. Repeat until the task is complete

Environment Variables

Make sure to set up your environment variables in a .env file:

# For Azure OpenAI (recommended for EXTERNAL_MINION_AGENT)
AZURE_DEPLOYMENT_NAME=your_deployment_name
AZURE_OPENAI_ENDPOINT=https://your-resource.openai.azure.com/
AZURE_OPENAI_API_KEY=your_azure_api_key
OPENAI_API_VERSION=2024-02-15-preview

# Or for OpenAI
OPENAI_API_KEY=your_openai_api_key

# Optional: For other providers via LiteLLM
# ANTHROPIC_API_KEY=your_anthropic_key
# GOOGLE_API_KEY=your_google_key

Development

To set up for development:

# Clone the repository
git clone https://github.com/yourusername/minion-agent.git
cd minion-agent

# Create a virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install development dependencies
pip install -e ".[dev]"

Deep Research

See Deep Research Documentation for usage instructions.

Community

Join our WeChat discussion group to connect with other users and get help:

WeChat Discussion Group

群聊: minion-agent讨论群

License

MIT License

About

A simple agent framework that's capable of browser use + mcp + auto instrument + plan + deep research + more

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages