Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions train_gpt2.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,18 +146,19 @@ def __init__(self, config):
self.init_rng.manual_seed(42)
self.apply(self._init_weights)

@torch.no_grad()
def _init_weights(self, module):
if isinstance(module, nn.Linear):
# apply special scaled init to the residual projections, per GPT-2 paper
std = 0.02 if not hasattr(module, 'LLMC_RESIDUAL_SCALE_FLAG') else 0.02/math.sqrt(2 * self.config.n_layer)
# we want to skip initializing lm_head, which shares parameters with wte
# and wte was already initialized down below during the Embedding init
if not hasattr(module, 'LLMC_SKIP_INIT'):
torch.nn.init.normal_(module.weight, mean=0.0, std=std, generator=self.init_rng)
module.weight.normal_(mean=0.0, std=std, generator=self.init_rng)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02, generator=self.init_rng)
module.weight.normal_(mean=0.0, std=0.02, generator=self.init_rng)

def forward(self, idx, targets=None, return_logits=True):
device = idx.device
Expand Down