Skip to content
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 67 additions & 0 deletions Mathlib/Analysis/Calculus/ContDiff/FaaDiBruno.lean
Original file line number Diff line number Diff line change
Expand Up @@ -835,6 +835,26 @@ theorem norm_compAlongOrderedFinpartitionL_le :
‖c.compAlongOrderedFinpartitionL 𝕜 E F G‖ ≤ 1 :=
MultilinearMap.mkContinuousLinear_norm_le _ zero_le_one _

theorem norm_compAlongOrderedFinpartitionL_apply_le (f : F [×c.length]→L[𝕜] G) :
‖c.compAlongOrderedFinpartitionL 𝕜 E F G f‖ ≤ ‖f‖ :=
(ContinuousLinearMap.le_of_opNorm_le _ c.norm_compAlongOrderedFinpartitionL_le f).trans_eq
(one_mul _)

theorem norm_compAlongOrderedFinpartition_sub_compAlongOrderedFinpartition_le
(f₁ f₂ : F [×c.length]→L[𝕜] G) (g₁ g₂ : ∀ i, E [×c.partSize i]→L[𝕜] F) :
‖c.compAlongOrderedFinpartition f₁ g₁ - c.compAlongOrderedFinpartition f₂ g₂‖ ≤
‖f₁‖ * c.length * max ‖g₁‖ ‖g₂‖ ^ (c.length - 1) * ‖g₁ - g₂‖ + ‖f₁ - f₂‖ * ∏ i, ‖g₂ i‖ := calc
_ ≤ ‖c.compAlongOrderedFinpartition f₁ g₁ - c.compAlongOrderedFinpartition f₁ g₂‖ +
‖c.compAlongOrderedFinpartition f₁ g₂ - c.compAlongOrderedFinpartition f₂ g₂‖ :=
norm_sub_le_norm_sub_add_norm_sub ..
_ ≤ ‖f₁‖ * c.length * max ‖g₁‖ ‖g₂‖ ^ (c.length - 1) * ‖g₁ - g₂‖ + ‖f₁ - f₂‖ * ∏ i, ‖g₂ i‖ := by
gcongr ?_ + ?_
· refine ((c.compAlongOrderedFinpartitionL 𝕜 E F G f₁).norm_image_sub_le g₁ g₂).trans ?_
simp only [Fintype.card_fin]
gcongr
apply norm_compAlongOrderedFinpartitionL_apply_le
· exact c.norm_compAlongOrderedFinpartition_le (f₁ - f₂) g₂

end OrderedFinpartition

/-! ### The Faa di Bruno formula -/
Expand Down Expand Up @@ -876,6 +896,53 @@ protected noncomputable def taylorComp
FormalMultilinearSeries 𝕜 E G :=
fun n ↦ ∑ c : OrderedFinpartition n, q.compAlongOrderedFinpartition p c

theorem taylorComp_sub_taylorComp_isBigO
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This one would deserve a docstring.

{α H : Type*} [NormedAddCommGroup H] {l : Filter α} {p₁ p₂ : α → FormalMultilinearSeries 𝕜 F G}
{q₁ q₂ : α → FormalMultilinearSeries 𝕜 E F} {f : α → H} {n : ℕ}
(hp_bdd : ∀ k ≤ n, l.IsBoundedUnder (· ≤ ·) (‖p₁ · k‖))
(hpf : ∀ k ≤ n, (fun a ↦ p₁ a k - p₂ a k) =O[l] f)
(hq₁_bdd : ∀ k ≤ n, l.IsBoundedUnder (· ≤ ·) (‖q₁ · k‖))
(hq₂_bdd : ∀ k ≤ n, l.IsBoundedUnder (· ≤ ·) (‖q₂ · k‖))
(hqf : ∀ k ≤ n, (fun a ↦ q₁ a k - q₂ a k) =O[l] f) :
(fun a ↦ (p₁ a).taylorComp (q₁ a) n - (p₂ a).taylorComp (q₂ a) n) =O[l] f := by
simp only [FormalMultilinearSeries.taylorComp, ← Finset.sum_sub_distrib]
refine .sum fun c _ ↦ ?_
refine .trans (.of_norm_le fun _ ↦
c.norm_compAlongOrderedFinpartition_sub_compAlongOrderedFinpartition_le ..) ?_
refine .add ?_ ?_
· have H₁ : (p₁ · c.length) =O[l] (1 : α → ℝ) := (hp_bdd _ c.length_le).isBigO_one ℝ
have H₂ : ∀ m, (q₁ · (c.partSize m)) =O[l] (1 : α → ℝ) := fun m ↦
(hq₁_bdd _ <| c.partSize_le _).isBigO_one ℝ
have H₃ : ∀ m, (q₂ · (c.partSize m)) =O[l] (1 : α → ℝ) := fun m ↦
(hq₂_bdd _ <| c.partSize_le _).isBigO_one ℝ
have H₄ : ∀ m, (fun a ↦ q₁ a (c.partSize m) - q₂ a (c.partSize m)) =O[l] f := fun m ↦
hqf _ <| c.partSize_le _
rw [← Asymptotics.isBigO_pi] at H₂ H₃ H₄
have H₅ := ((H₂.prod_left H₃).norm_left.pow (c.length - 1)).mul H₄.norm_norm
simpa [mul_assoc] using H₁.norm_left.mul <| H₅.const_mul_left c.length
· have H₁ : (fun a ↦ p₁ a c.length - p₂ a c.length) =O[l] f := hpf _ c.length_le
have H₂ : ∀ i, (q₂ · (c.partSize i)) =O[l] (1 : α → ℝ) := fun i ↦
(hq₂_bdd _ <| c.partSize_le i).isBigO_one ℝ
simpa using H₁.norm_norm.mul <| .finsetProd fun i _ ↦ (H₂ i).norm_left

theorem taylorComp_sub_taylorComp_isLittleO
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ditto

{α H : Type*} [NormedAddCommGroup H] {l : Filter α} {p₁ p₂ : α → FormalMultilinearSeries 𝕜 F G}
{q₁ q₂ : α → FormalMultilinearSeries 𝕜 E F} {f : α → H} {n : ℕ}
(hp_bdd : ∀ k ≤ n, l.IsBoundedUnder (· ≤ ·) (‖p₁ · k‖))
(hpf : ∀ k ≤ n, (fun a ↦ p₁ a k - p₂ a k) =o[l] f)
(hq₁_bdd : ∀ k ≤ n, l.IsBoundedUnder (· ≤ ·) (‖q₁ · k‖))
(hq₂_bdd : ∀ k ≤ n, l.IsBoundedUnder (· ≤ ·) (‖q₂ · k‖))
(hqf : ∀ k ≤ n, (fun a ↦ q₁ a k - q₂ a k) =o[l] f) :
(fun a ↦ (p₁ a).taylorComp (q₁ a) n - (p₂ a).taylorComp (q₂ a) n) =o[l] f := calc
_ =O[l] fun a ↦ (fun k : Fin (n + 1) ↦ p₁ a k - p₂ a k,
fun k : Fin (n + 1) ↦ q₁ a k - q₂ a k) := by
refine taylorComp_sub_taylorComp_isBigO hp_bdd ?_ hq₁_bdd hq₂_bdd ?_
all_goals simp only [← Nat.lt_succ_iff, Nat.forall_lt_iff_fin, ← Asymptotics.isBigO_pi]
exacts [Asymptotics.isBigO_fst_prod, Asymptotics.isBigO_snd_prod]
_ =o[l] f :=
.prod_left (Asymptotics.isLittleO_pi.2 fun k ↦ hpf k (by grind))
(Asymptotics.isLittleO_pi.2 fun k ↦ hqf k (by grind))

end FormalMultilinearSeries

theorem analyticOn_taylorComp
Expand Down
8 changes: 8 additions & 0 deletions Mathlib/Data/Fin/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,14 @@ open Fin Nat Function

attribute [simp] Fin.succ_ne_zero Fin.castSucc_lt_last

theorem Nat.forall_lt_iff_fin {n : ℕ} {p : ∀ k, k < n → Prop} :
(∀ k hk, p k hk) ↔ ∀ k : Fin n, p k k.is_lt :=
.symm <| Fin.forall_iff

theorem Nat.exists_lt_iff_fin {n : ℕ} {p : ∀ k, k < n → Prop} :
(∃ k hk, p k hk) ↔ ∃ k : Fin n, p k k.is_lt :=
.symm <| Fin.exists_iff

/-- Elimination principle for the empty set `Fin 0`, dependent version. -/
def finZeroElim {α : Fin 0 → Sort*} (x : Fin 0) : α x :=
x.elim0
Expand Down
Loading