You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+43-14Lines changed: 43 additions & 14 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -39,6 +39,31 @@ Trinity-RFT provides functionalities for users with different backgrounds and ob
39
39
* 📊 **Data engineers:** Create RFT datasets and build data pipelines for cleaning, augmentation, and human-in-the-loop scenarios [[tutorial]](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/develop_operator.html)
40
40
41
41
42
+
43
+
## 🚀 News
44
+
45
+
*[2025-12] Trinity-RFT powers the medical and health business of "Taobao Shangou", enabling the AI agent to understand vague symptoms, proactively ask follow-up questions, and provide precise recommendations ([News](https://tech.china.com.cn/sx/20251201/411376.shtml)).
*[2025-11] Introducing [Learn-to-Ask](https://github.com/modelscope/Trinity-RFT/tree/main/examples/learn_to_ask): a framework for training proactive dialogue agents from offline expert data ([paper](https://arxiv.org/pdf/2510.25441)).
*[2025-09][Our paper](https://arxiv.org/pdf/2509.24203) reveals a novel off-policy interpretation for group-relative REINFORCE and its variants like GRPO and AsymRE ([implementation](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k)).
<li> [2025-10] Trinity-RFT v0.3.1 released: multi-stage training support, improved agentic RL examples, LoRA support, debug mode and new RL algorithms.</li>
56
+
<li> [2025-09] Trinity-RFT v0.3.0 released: enhanced Buffer, FSDP2 & Megatron support, multi-modal models, and new RL algorithms/examples.</li>
57
+
<li> [2025-08] Trinity-RFT v0.2.1 released.</li>
58
+
<li> [2025-07] Trinity-RFT v0.2.0 released.</li>
59
+
<li> [2025-07] Technical report (arXiv v2) updated with new features, examples, and experiments: [link](https://arxiv.org/abs/2505.17826).</li>
60
+
<li> [2025-06] Trinity-RFT v0.1.1 released.</li>
61
+
<li> [2025-05] Trinity-RFT v0.1.0 released, plus [technical report](https://arxiv.org/abs/2505.17826).</li>
62
+
<li> [2025-04] Trinity-RFT open sourced.</li>
63
+
</ul>
64
+
</details>
65
+
66
+
42
67
## 🔨 Tutorials and Guidelines
43
68
44
69
@@ -86,21 +111,25 @@ Trinity-RFT provides functionalities for users with different backgrounds and ob
86
111
87
112
88
113
89
-
## 🚀 News
114
+
## 🔧 Supported Algorithms
115
+
116
+
We list some algorithms supported by Trinity-RFT in the following table. For more details, the concrete configurations are shown in the [Algorithm module](https://github.com/modelscope/Trinity-RFT/blob/main/trinity/algorithm/algorithm.py). You can also set up new algorithms by customizing different components, see [tutorial](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/develop_algorithm.html).
*[2025-11] Introducing [Learn-to-Ask](https://github.com/modelscope/Trinity-RFT/tree/main/examples/learn_to_ask): a framework for training proactive dialogue agents from offline expert data ([paper](https://arxiv.org/pdf/2510.25441)).
0 commit comments