-
-
Notifications
You must be signed in to change notification settings - Fork 11.8k
[Model] Add LoRA support for Whisper models #29856
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
daje0601
wants to merge
1
commit into
vllm-project:main
Choose a base branch
from
daje0601:whisper-multi-lora-support
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+357
−37
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
136 changes: 136 additions & 0 deletions
136
examples/offline_inference/whisper_multilora_inference.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,136 @@ | ||
| # SPDX-License-Identifier: Apache-2.0 | ||
| # SPDX-FileCopyrightText: Copyright contributors to the vLLM project | ||
| """ | ||
| This example shows how to use multi-LoRA functionality with | ||
| Whisper models for speech-to-text transcription. | ||
| Usage: | ||
| python whisper_multilora_inference.py | ||
| Note: Replace LORA_PATH with your actual LoRA adapter path. | ||
| If you don't have a LoRA adapter, the example will run with | ||
| the base model only. | ||
| """ | ||
|
|
||
| import os | ||
|
|
||
| from vllm import LLM, SamplingParams | ||
| from vllm.assets.audio import AudioAsset | ||
| from vllm.lora.request import LoRARequest | ||
|
|
||
|
|
||
| def create_whisper_prompt(language: str = "en") -> dict: | ||
| """Create a Whisper transcription prompt with audio input. | ||
| Args: | ||
| language: ISO 639-1 language code (e.g., "en", "ko", "ja") | ||
| Returns: | ||
| Dictionary with prompt and multi-modal data | ||
| """ | ||
| # Load sample audio from vLLM assets | ||
| audio_asset = AudioAsset("mary_had_lamb") | ||
| audio_data = audio_asset.audio_and_sample_rate | ||
|
|
||
| # Whisper prompt format: | ||
| # <|startoftranscript|><|language|><|task|><|notimestamps|> | ||
| prompt = f"<|startoftranscript|><|{language}|><|transcribe|><|notimestamps|>" | ||
|
|
||
| return { | ||
| "prompt": prompt, | ||
| "multi_modal_data": { | ||
| "audio": audio_data, | ||
| }, | ||
| } | ||
|
|
||
|
|
||
| def run_base_model_inference(llm: LLM, sampling_params: SamplingParams) -> None: | ||
| """Run inference using the base Whisper model without LoRA.""" | ||
| print("\n" + "=" * 60) | ||
| print("Running inference with BASE MODEL (no LoRA)") | ||
| print("=" * 60) | ||
|
|
||
| inputs = create_whisper_prompt(language="en") | ||
| outputs = llm.generate([inputs], sampling_params=sampling_params) | ||
|
|
||
| for output in outputs: | ||
| print(f"Transcription: {output.outputs[0].text}") | ||
|
|
||
|
|
||
| def run_lora_inference( | ||
| llm: LLM, | ||
| sampling_params: SamplingParams, | ||
| lora_path: str, | ||
| lora_name: str, | ||
| lora_id: int, | ||
| ) -> None: | ||
| """Run inference using a specific LoRA adapter. | ||
| Args: | ||
| llm: The vLLM engine | ||
| sampling_params: Sampling parameters | ||
| lora_path: Path to the LoRA adapter | ||
| lora_name: Name identifier for the LoRA | ||
| lora_id: Unique integer ID for the LoRA | ||
| """ | ||
| print("\n" + "=" * 60) | ||
| print(f"Running inference with LoRA: {lora_name}") | ||
| print("=" * 60) | ||
|
|
||
| inputs = create_whisper_prompt(language="en") | ||
| lora_request = LoRARequest(lora_name, lora_id, lora_path) | ||
|
|
||
| outputs = llm.generate( | ||
| [inputs], | ||
| sampling_params=sampling_params, | ||
| lora_request=lora_request, | ||
| ) | ||
|
|
||
| for output in outputs: | ||
| print(f"Transcription: {output.outputs[0].text}") | ||
|
|
||
|
|
||
| def main(): | ||
| """Main function demonstrating Whisper Multi-LoRA inference.""" | ||
| # Initialize Whisper model with LoRA support enabled | ||
| print("Initializing Whisper model with Multi-LoRA support...") | ||
| llm = LLM( | ||
| model="openai/whisper-large-v3-turbo", | ||
| enable_lora=True, | ||
| max_loras=4, # Maximum number of LoRAs to keep in memory | ||
| max_lora_rank=64, # Maximum LoRA rank supported | ||
| max_model_len=448, # Whisper's max target positions | ||
| dtype="half", | ||
| gpu_memory_utilization=0.8, | ||
| trust_remote_code=True, | ||
| ) | ||
|
|
||
| sampling_params = SamplingParams( | ||
| temperature=0, | ||
| max_tokens=200, | ||
| ) | ||
|
|
||
| # Run base model inference | ||
| run_base_model_inference(llm, sampling_params) | ||
|
|
||
| # Example LoRA paths - replace with your actual LoRA adapters | ||
| lora_paths = [ | ||
| ("lora_adapter_1", "/path/to/your/lora_adapter_1"), | ||
| ("lora_adapter_2", "/path/to/your/lora_adapter_2"), | ||
| ] | ||
|
|
||
| # Run inference with each LoRA adapter (if paths exist) | ||
| for lora_id, (lora_name, lora_path) in enumerate(lora_paths, start=1): | ||
| if os.path.exists(lora_path): | ||
| run_lora_inference(llm, sampling_params, lora_path, lora_name, lora_id) | ||
| else: | ||
| print(f"\nSkipping {lora_name}: path does not exist ({lora_path})") | ||
| print("To use LoRA adapters, update lora_paths with valid paths.") | ||
|
|
||
| print("\n" + "=" * 60) | ||
| print("Multi-LoRA inference complete!") | ||
| print("=" * 60) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| main() | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,168 @@ | ||
| # SPDX-License-Identifier: Apache-2.0 | ||
| # SPDX-FileCopyrightText: Copyright contributors to the vLLM project | ||
| """ | ||
| Tests for Whisper Multi-LoRA support. | ||
|
|
||
| This module tests: | ||
| 1. WhisperForConditionalGeneration LoRA interface compliance | ||
| 2. MergedQKVParallelLinearWithLoRA support for KV-only (2-slice) configuration | ||
| 3. WorkerLoRAManager compatibility with Whisper's max_target_positions | ||
| """ | ||
|
|
||
| import pytest | ||
| import torch | ||
|
|
||
| from vllm.lora.layers import ( | ||
| MergedQKVParallelLinearWithLoRA, | ||
| ) | ||
| from vllm.model_executor.layers.linear import QKVParallelLinear | ||
| from vllm.model_executor.models.whisper import WhisperForConditionalGeneration | ||
| from vllm.platforms import current_platform | ||
|
|
||
| pytestmark = pytest.mark.skipif( | ||
| not (current_platform.is_cuda_alike() or current_platform.is_cpu()), | ||
| reason="Backend not supported", | ||
| ) | ||
|
|
||
|
|
||
| class TestWhisperLoRAInterface: | ||
| """Test that WhisperForConditionalGeneration has proper LoRA support.""" | ||
|
|
||
| def test_supports_lora_attribute(self): | ||
| """Verify that WhisperForConditionalGeneration has SupportsLoRA interface.""" | ||
| from vllm.model_executor.models.interfaces import SupportsLoRA | ||
|
|
||
| assert issubclass(WhisperForConditionalGeneration, SupportsLoRA), ( | ||
| "WhisperForConditionalGeneration should inherit from SupportsLoRA" | ||
| ) | ||
|
|
||
| def test_embedding_modules_defined(self): | ||
| """Verify embedding_modules attribute is defined.""" | ||
| assert hasattr(WhisperForConditionalGeneration, "embedding_modules") | ||
| assert isinstance(WhisperForConditionalGeneration.embedding_modules, dict) | ||
|
|
||
| def test_embedding_padding_modules_defined(self): | ||
| """Verify embedding_padding_modules attribute is defined.""" | ||
| assert hasattr(WhisperForConditionalGeneration, "embedding_padding_modules") | ||
| assert isinstance( | ||
| WhisperForConditionalGeneration.embedding_padding_modules, list | ||
| ) | ||
|
|
||
| def test_packed_modules_mapping_format(self): | ||
| """Verify packed_modules_mapping has correct format for LoRA.""" | ||
| mapping = WhisperForConditionalGeneration.packed_modules_mapping | ||
|
|
||
| # Should have qkv_proj and kv_proj mappings | ||
| assert "qkv_proj" in mapping, "Missing qkv_proj in packed_modules_mapping" | ||
| assert "kv_proj" in mapping, "Missing kv_proj in packed_modules_mapping" | ||
|
|
||
| # qkv_proj should map to [q_proj, k_proj, v_proj] | ||
| assert mapping["qkv_proj"] == ["q_proj", "k_proj", "v_proj"] | ||
|
|
||
| # kv_proj should map to [k_proj, v_proj] (for cross-attention) | ||
| assert mapping["kv_proj"] == ["k_proj", "v_proj"] | ||
|
|
||
|
|
||
| class TestMergedQKVParallelLinearWithLoRAKVOnly: | ||
| """Test MergedQKVParallelLinearWithLoRA with KV-only (2-slice) configuration.""" | ||
|
|
||
| def test_can_replace_layer_accepts_2_modules(self): | ||
| """Verify can_replace_layer accepts 2-module (KV-only) configurations.""" | ||
| from vllm.config.lora import LoRAConfig | ||
|
|
||
| # Create a mock QKVParallelLinear layer | ||
| # This simulates a KV-only projection (like Whisper's encoder_attn.kv_proj) | ||
| linear = QKVParallelLinear( | ||
| hidden_size=512, | ||
| head_size=64, | ||
| total_num_heads=8, | ||
| total_num_kv_heads=8, | ||
| bias=False, | ||
| params_dtype=torch.float16, | ||
| ) | ||
|
|
||
| lora_config = LoRAConfig( | ||
| max_lora_rank=32, | ||
| max_loras=4, | ||
| max_cpu_loras=4, | ||
| lora_extra_vocab_size=0, | ||
| ) | ||
|
|
||
| # Test with 2 modules (KV-only, like encoder_attn.kv_proj) | ||
| packed_modules_2 = ["k_proj", "v_proj"] | ||
| result_2 = MergedQKVParallelLinearWithLoRA.can_replace_layer( | ||
| source_layer=linear, | ||
| lora_config=lora_config, | ||
| packed_modules_list=packed_modules_2, | ||
| model_config=None, | ||
| ) | ||
| assert result_2 is True, "Should accept 2-module (KV-only) configuration" | ||
|
|
||
| # Test with 3 modules (QKV, like self_attn.qkv_proj) | ||
| packed_modules_3 = ["q_proj", "k_proj", "v_proj"] | ||
| result_3 = MergedQKVParallelLinearWithLoRA.can_replace_layer( | ||
| source_layer=linear, | ||
| lora_config=lora_config, | ||
| packed_modules_list=packed_modules_3, | ||
| model_config=None, | ||
| ) | ||
| assert result_3 is True, "Should accept 3-module (QKV) configuration" | ||
|
|
||
| # Test with 1 module (should be rejected) | ||
| packed_modules_1 = ["q_proj"] | ||
| result_1 = MergedQKVParallelLinearWithLoRA.can_replace_layer( | ||
| source_layer=linear, | ||
| lora_config=lora_config, | ||
| packed_modules_list=packed_modules_1, | ||
| model_config=None, | ||
| ) | ||
| assert result_1 is False, "Should reject 1-module configuration" | ||
|
|
||
|
|
||
| class TestWorkerLoRAManagerWhisperCompat: | ||
| """Test WorkerLoRAManager compatibility with Whisper config.""" | ||
|
|
||
| def test_max_position_embeddings_fallback(self): | ||
| """Test that max_target_positions is used when missing.""" | ||
|
|
||
| # Create a mock config similar to Whisper's | ||
| class MockWhisperConfig: | ||
| def __init__(self): | ||
| self.max_target_positions = 448 | ||
| # Note: no max_position_embeddings attribute | ||
|
|
||
| def get_text_config(self): | ||
| return self | ||
|
|
||
| config = MockWhisperConfig() | ||
|
|
||
| # Simulate the logic from WorkerLoRAManager | ||
| max_pos = getattr( | ||
| config, | ||
| "max_position_embeddings", | ||
| getattr(config, "max_target_positions", None), | ||
| ) | ||
|
|
||
| assert max_pos == 448, "Should fall back to max_target_positions" | ||
|
|
||
| def test_max_position_embeddings_priority(self): | ||
| """Test that max_position_embeddings takes priority when present.""" | ||
|
|
||
| class MockLLMConfig: | ||
| def __init__(self): | ||
| self.max_position_embeddings = 4096 | ||
| self.max_target_positions = 448 | ||
|
|
||
| def get_text_config(self): | ||
| return self | ||
|
|
||
| config = MockLLMConfig() | ||
|
|
||
| # Simulate the logic from WorkerLoRAManager | ||
| max_pos = getattr( | ||
| config, | ||
| "max_position_embeddings", | ||
| getattr(config, "max_target_positions", None), | ||
| ) | ||
|
|
||
| assert max_pos == 4096, "Should use max_position_embeddings when present" |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -356,8 +356,6 @@ class MergedQKVParallelLinearWithLoRA(MergedColumnParallelLinearWithLoRA): | |
|
|
||
| def __init__(self, base_layer: QKVParallelLinear) -> None: | ||
| super().__init__(base_layer) | ||
| # There are three LoRA layer. | ||
| self.n_slices = len(self.base_layer.output_sizes) | ||
|
|
||
| self.q_proj_shard_size = self.base_layer.num_heads * self.base_layer.head_size | ||
| self.kv_proj_shard_size = ( | ||
|
|
@@ -366,16 +364,23 @@ def __init__(self, base_layer: QKVParallelLinear) -> None: | |
| self.q_shard_id = self.tp_rank | ||
| self.kv_shard_id = self.tp_rank // self.base_layer.num_kv_head_replicas | ||
|
|
||
| self.output_slices = ( | ||
| self.q_proj_shard_size, | ||
| self.kv_proj_shard_size, | ||
| self.kv_proj_shard_size, | ||
| ) | ||
| self.output_ids = ( | ||
| self.q_shard_id, | ||
| self.kv_shard_id, | ||
| self.kv_shard_id, | ||
| ) | ||
| # Build output_slices and output_ids dynamically to support both | ||
| # QKV (3 slices) and KV-only (2 slices) configurations. | ||
| # KV-only is used in cross-attention layers (e.g., Whisper encoder_attn). | ||
| slices = [] | ||
| ids = [] | ||
| if self.q_proj_shard_size > 0: | ||
| slices.append(self.q_proj_shard_size) | ||
| ids.append(self.q_shard_id) | ||
| if self.kv_proj_shard_size > 0: | ||
| slices.append(self.kv_proj_shard_size) | ||
| ids.append(self.kv_shard_id) | ||
| slices.append(self.kv_proj_shard_size) | ||
| ids.append(self.kv_shard_id) | ||
|
|
||
| self.output_slices = tuple(slices) | ||
| self.output_ids = tuple(ids) | ||
| self.n_slices = len(self.output_slices) | ||
|
|
||
| def create_lora_weights( | ||
| self, | ||
|
|
@@ -398,7 +403,11 @@ def can_replace_layer( | |
| packed_modules_list: list, | ||
| model_config: PretrainedConfig | None = None, | ||
| ) -> bool: | ||
| return type(source_layer) is QKVParallelLinear and len(packed_modules_list) == 3 | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can we use |
||
| # Support both QKV (3 modules) and KV-only (2 modules) configurations | ||
| return type(source_layer) is QKVParallelLinear and len(packed_modules_list) in ( | ||
| 2, | ||
| 3, | ||
| ) | ||
|
|
||
|
|
||
| # These following layers are based on the tensor parallelism strategy given in | ||
|
|
@@ -539,21 +548,18 @@ class MergedQKVParallelLinearWithShardedLoRA(MergedQKVParallelLinearWithLoRA): | |
| def slice_lora_a( | ||
| self, lora_a: list[torch.Tensor | None] | ||
| ) -> list[torch.Tensor | None]: | ||
| # NOTE: lora_a contains 3 subloras, and each sublora could be None. | ||
| shard_size = [self.lora_a_stacked[i].shape[2] for i in range(3)] | ||
| start_idx = [self.tp_rank * shard_size[i] for i in range(3)] | ||
| lora_a = [ | ||
| lora_a[0][start_idx[0] : start_idx[0] + shard_size[0], :] | ||
| if lora_a[0] is not None | ||
| else None, | ||
| lora_a[1][start_idx[1] : start_idx[1] + shard_size[1], :] | ||
| if lora_a[1] is not None | ||
| else None, | ||
| lora_a[2][start_idx[2] : start_idx[2] + shard_size[2], :] | ||
| if lora_a[2] is not None | ||
| else None, | ||
| ] | ||
| return lora_a | ||
| # NOTE: lora_a contains n_slices subloras, and each sublora could be None. | ||
| # n_slices is 3 for QKV and 2 for KV-only configurations. | ||
| shard_size = [self.lora_a_stacked[i].shape[2] for i in range(self.n_slices)] | ||
| start_idx = [self.tp_rank * shard_size[i] for i in range(self.n_slices)] | ||
| result: list[torch.Tensor | None] = [] | ||
| for i in range(self.n_slices): | ||
| lora_a_i = lora_a[i] | ||
| if lora_a_i is not None: | ||
| result.append(lora_a_i[start_idx[i] : start_idx[i] + shard_size[i], :]) | ||
| else: | ||
| result.append(None) | ||
| return result | ||
|
|
||
| def apply(self, x: torch.Tensor, bias: torch.Tensor | None = None) -> torch.Tensor: | ||
| return _mcp_apply(x, bias, self) | ||
|
|
||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It looks like this example is similar to multilora_inference.py, so do we need to add this example?